CMP 334: Seventh Class

Performance
HW 5 solution
Averages and weighted averages (review)
Amdahl's law
Ripple-carry adder circuits
Binary addition
Half-adder circuits
Full-adder circuits
Subtraction, negative numbers, signed arithmetic $A-B=A+-B$

For next class: HW 6; read A.3-4, 2.1-5, 3.1-2

HW 5: Performance Problems

1) Computer A has a 5 GHz clock and executes program P in 30 seconds with an average CPI (cycles per instruction) of 3.0. How many instructions does it execute for program P ?
2) Computer B has a 2 GHz clock. It executes P with the same number of instructions as computer A with an average CPI 1.0. How long does it take to execute P?
3) Compare the performance of computer B and computer A on program
P. Which is faster? by how much?
4) A new compiler for computer A compiles program P so that it executes only half as many instructions. Unfortunately, the CPI for computer A on these instructions is 4.0 . How long does it take to execute the newly compiled program?
5) Compare the performance of computer B (with the old compiler) to computer A (with the new compiler) on program P . Which is faster? by how much?

Performance Equations

Performance - inverse of execution time

$$
\text { performance: } P_{x} \equiv \frac{1}{T_{x}} \quad \text { relative performance: } \frac{P_{x}}{P_{y}}=\frac{T_{y}}{T_{x}}
$$

CPU time equation

$$
T_{\text {CPU }}(\text { execution })=\frac{\# \text { instructions }}{\text { execution }} \cdot \frac{\# \text { cycles }}{\text { instruction }} \cdot \frac{\# \text { seconds }}{\text { cycle }}
$$

Amdahl's law

Processor Performance Equations

$$
\mathrm{T}_{X}=\# \text { instructions }_{X} \cdot \mathrm{CPI}_{X} \cdot \text { cycleTime }_{X}
$$

$$
\mathrm{T}_{X}=\frac{\# \text { instructions }_{X} \cdot \mathrm{CPI}_{X}}{\text { clockRate }_{X}}
$$

$$
\frac{\mathbf{P}_{X}}{\mathbf{P}_{Y}}=\frac{\mathbf{T}_{Y}}{\mathbf{T}_{X}}=\frac{\# \text { instructions }_{Y} \cdot \mathrm{CPI}_{Y} \cdot \text { cycleTime }_{Y}}{\# \text { instructions }_{X} \cdot \mathrm{CPI}_{X} \cdot \text { cycleTime }_{X}}
$$

$$
\frac{\mathbf{P}_{X}}{\mathbf{P}_{Y}}=\frac{\mathbf{T}_{Y}}{\mathbf{T}_{X}}=\frac{\# \text { instructions }_{Y} \cdot \mathrm{CPI}_{Y} \cdot \text { clockRate }_{X}}{\# \text { instructions }_{X} \cdot \mathrm{CPI}_{X} \cdot \text { clockRate }_{Y}}
$$

HW 5.1 Instruction Count

Computer \mathbf{A} has a 5 GHz clock and executes program P in 30 seconds with an average CPI (cycles per instruction) of 3.0 . How many instructions does it execute for program P ?

$$
\begin{aligned}
& \mathbf{T}_{A}=\frac{\# \text { instructions }_{A} \cdot \mathrm{CPI}_{A}}{\text { clockRate }_{A}} \\
& 30 \text { seconds }=\frac{\# \text { instructions }_{A} \cdot 3.0 \text { cycles } / \text { instruction }}{5 \mathrm{GHz}} \\
& \begin{aligned}
\# \text { instructions } \\
A
\end{aligned} \\
& =\frac{30 \text { seconds } \cdot 5 \cdot 10^{9} \text { eyeles } / \text { second }}{3.0 \text { eycles } / \text { instruction }} \\
& \\
& =\mathbf{5 0} \cdot 10^{9} \text { instructions }
\end{aligned}
$$

HW 5.2 Execution Time

Computer \mathbf{B} has a 2 GHz clock. It executes P with the same number of instructions as computer A ($50 \cdot 10^{9}$ instructions) with an average CPI 1.0. How long does it take to execute P?

$$
\begin{aligned}
\mathbf{T}_{B} & =\frac{\# \text { instructions }_{B} \cdot \mathrm{CPI}_{B}}{\text { clockRate }_{B}} \\
& =\frac{50 \cdot 10^{9} \text { instructions } \cdot 1.0 \text { cycles } / \text { instruction }}{2 \mathrm{GHz}} \\
& =\frac{50 \cdot 10^{9} \text { instructions } \cdot 1 \text { eycles } / \text { instruction }}{2 \cdot 10^{9} \text { eyeles } / \text { second }} \\
& =\mathbf{2 5} \text { seconds }
\end{aligned}
$$

HW 5.3 Relative Performance

Compare the performance of computer \mathbf{B} and computer \mathbf{A} on program P . Which is faster? by how much?

$$
\frac{\mathbf{P}_{B}}{\mathbf{P}_{A}}=\frac{\mathbf{T}_{A}}{\mathbf{T}_{B}}=\frac{30 \text { seconds }}{25 \text { seconds }}=1.2
$$

\mathbf{B} is 1.2 times faster than \mathbf{A}.

HW 5.4 Execution Time

A new compiler for computer A compiles program P so that it executes only half as many instructions. Unfortunately, the CPI for computer A on these instructions is 4.0. How long does it take to execute the newly compiled program?

$$
\begin{aligned}
T_{A^{\prime}} & =\frac{\# \text { instructions }_{A^{\prime}} \cdot \mathrm{CPI}_{A^{\prime}}}{\text { clockRate }_{A^{\prime}}} \\
& =\frac{\frac{1}{2} \cdot \# \text { instructions }_{A} \cdot 4.0 \cdot \text { cycles }^{2} \text { instruction }}{\text { clockRate }_{A}} \\
& =\frac{0.5 \cdot 50 \cdot 10^{9} \text { instructions } \cdot 4.0 \cdot \text { eyeles } / \text { instruction }}{5 \cdot 10^{9} \text { eyeles } / \text { second }} \\
& =\frac{100}{5} \text { seconds }=\mathbf{2 0} \text { seconds }
\end{aligned}
$$

HW 5.5 Relative Performance

Compare the performance of computer \mathbf{B} (with the old compiler) to computer \mathbf{A}^{\prime} (A with the new compiler) on program P . Which is faster? by how much?

$$
\frac{\mathbf{P}_{A^{\prime}}}{\mathbf{P}_{B}}=\frac{\mathbf{T}_{B}}{\mathbf{T}_{A^{\prime}}}=\frac{25 \text { seconds }}{20 \text { seconds }}=1.25
$$

\mathbf{A}^{\prime} is 1.25 times faster than \mathbf{B}.

$$
\frac{\mathbf{P}_{A^{\prime}}}{\mathbf{P}_{A}}=\frac{\mathbf{T}_{A}}{\mathbf{T}_{A^{\prime}}}=\frac{30 \text { seconds }}{20 \text { seconds }}=\mathbf{1 . 5}
$$

\mathbf{A}^{\prime} is 1.5 times faster than \mathbf{A}.

Averages and Weighted Averages

Given values: $\left\{v_{1}, v_{2}, \ldots v_{N}\right\}$ \& weights: $\left\{w_{1}, w_{2}, \ldots w_{N}\right\}$
average: $\vec{v} \equiv \frac{\sum_{i=1}^{N} v_{i}}{N}$
total weight: $\quad \boldsymbol{W} \equiv \sum_{i=1}^{N} w_{i} \quad$ normalized weight: $\quad q_{i} \equiv \frac{w_{i}}{W} \quad\left(\sum_{i=0}^{N} q_{i}=1\right)$
weighted average: $\frac{\sum_{i=1}^{N} w_{i} v_{i}}{\sum_{i=1}^{N} w_{i}}=\frac{\sum_{i=1}^{N} w_{i} v_{i}}{W}=\sum_{i=1}^{N} \frac{w_{i}}{W} v_{i}=\sum_{i=1}^{N} q_{i} v_{i}$

Typical Instruction Statistics

Instruction types, frequencies, and execution times
50\% ALU instructions 5 CPI

30\% Memory instructions
20\% Load
10\% Store
20\% Branch instructions 8 CPI 6 CPI
0.5\% Special instructions

Average Cycles Per Instruction

(Weighted) average CPI

$$
\begin{aligned}
& =q_{\text {ALU }} T_{\text {ALU }}+q_{\text {Load }} T_{\text {Load }}+q_{\text {Store }} T_{\text {Store }}+q_{\text {Branch }} T_{\text {Branch }} \\
& =0.5 \cdot 5+0.2 \cdot 8+0.1 \cdot 6+0.2 \cdot 10 \\
& =2.5+1.6+0.6+2.0 \\
& =6.7 \text { cycles approximation: } 20 / 6.7 \approx 3
\end{aligned}
$$

Execution time fraction by instruction type

ALU	$2.5 / 6.7$	$\sim 37.5 \%$
Load	$1.6 / 6.7$	$\sim 24.0 \%$
Store	$0.6 / 6.7$	$\sim 9.0 \%$
Branch	$2.0 / 6.7$	$\sim 30.0 \%$

CPU Time Equation

$$
T_{\text {CPU }}(\text { execution })=\frac{\# \text { instructions }}{\text { execution }} \cdot \frac{\# \text { cycles }}{\text { instruction }} \cdot \frac{\# \text { seconds }}{\text { cycle }}
$$

If $T_{\text {CPU }}($ execution $) \approx 20$ seconds, cycle ${ }_{\text {time }}=10^{-9}$ seconds
20 seconds $\approx \#$ instructions $\cdot 6.7 \cdot 10^{-9}$ seconds
\# instructions $\approx \frac{20}{6.7 \cdot 10^{-9}} \approx 3 \cdot 10^{9}$

$$
\text { instruction }_{\text {time }}=\frac{\# \text { seconds }}{\text { instruction }}=\frac{\# \text { cycles }}{\text { instruction }} \cdot \frac{\# \text { seconds }}{\text { cycle }}
$$

Performance Equations

Performance - inverse of execution time

$$
\text { performance: } \mathbf{P}_{x} \equiv \frac{1}{\mathbf{T}_{x}} \quad \text { relative performance: } \frac{\mathbf{P}_{x}}{\mathbf{P}_{y}}=\frac{\mathbf{T}_{y}}{\mathbf{T}_{x}}
$$

CPU time equation

$$
\mathrm{T}_{\text {CPU }}(\text { execution })=\frac{\# \text { instructions }}{\text { execution }} \cdot \frac{\# \text { cycles }}{\text { instruction }} \cdot \frac{\# \text { seconds }}{\text { cycle }}
$$

Amdahl's law

$$
\mathbf{T}_{\text {new }}=\frac{\text { fraction affected } \cdot \mathbf{T}_{\text {old }}}{\text { improvement }}+\text { fraction not affected } \cdot \mathbf{T}_{\text {old }}
$$

Amdahl's Law

$\mathrm{T}_{\text {old }}=$ affected + unaffected
$\mathrm{T}_{\text {new }}=$ improved + unaffected
SpeedUp = affected / improved

Overall SpeedUp $=P_{\text {new }} / P_{\text {old }}=T_{\text {old }} / T_{\text {new }}$

(fraction affected) $\mathrm{F}_{\mathrm{a}}=$ affected $/ T_{\text {old }}$

(fraction unaffected) $\bar{F}_{a}=$ unaffected $/ T_{\text {old }}$

Improving Race Car Performance

miles

miles/hours

cruising	$\mathbf{9 0 0}$	$\mathbf{9 0}$
other	$\mathbf{1 0 0}$	$\mathbf{5 0}$

Race time $=900 / 90+100 / 50=12$ hours
Change \#1: $1.11 \times$ improvement in cruising speed
Change \#2: 2.00 x improvement in other speed

Change \# 1

$$
\begin{aligned}
& \mathbf{T}_{\text {old }}=12 \text { hours } \\
& \mathbf{f a}=0.90 \text { (fraction affected }=\text { affected/total }=\frac{900 \text { miles }}{1000 \text { miles }} \text {) } \\
& \overline{\mathbf{f a}}=0.10 \text { (fraction unaffected }=\text { unaffected/total }=\frac{100 \text { miles }}{1000 \text { miles }} \text {) } \\
& \mathbf{s u}=1.11 \text { (speedup for affected) } \\
& \mathbf{T}_{\text {new }}=\frac{\mathbf{f a} \cdot \mathbf{T}_{\text {old }}}{\mathbf{s u}}+\overline{\mathbf{f a}} \cdot \mathbf{T}_{\text {old }} \\
& =\frac{0.9 \cdot 12}{1.11}+0.1 \cdot 12 \approx 9.73+1.2=\mathbf{1 0 . 9 3} \text { hours }
\end{aligned}
$$

Change \# 2

$$
\begin{aligned}
& \mathbf{T}_{\mathbf{o l d}}=\mathbf{1 2} \text { hours } \\
& \left.\mathbf{f a}=0.10 \quad \text { (fraction affected }=\text { affected/total }=\frac{100 \text { miles }}{1000 \text { miles }}\right) \\
& \left.\overline{\mathbf{f a}}=0.90 \quad \text { (fraction unaffected }=\text { unaffected/total }=\frac{900 \text { onise }}{1000 \text { miles }}\right) \\
& \mathbf{s u}=2.00 \quad \text { (speedup for affected) } \\
& \mathbf{T}_{\text {new }} \\
& =\frac{\mathbf{f a} \cdot \mathbf{T}_{\mathbf{o l d}}}{\mathbf{S u}}+\overline{\mathbf{f a}} \cdot \mathbf{T}_{\text {old }} \\
& \quad=\frac{0.1 \cdot 12}{2}+0.9 \cdot 12 \approx 0.6+10.8=\mathbf{1 1 . 4} \text { hours }
\end{aligned}
$$

Ghange \#1 wrong!

$$
\begin{aligned}
& \mathbf{T}_{\mathbf{o l d}}=\mathbf{1 2} \text { hours } \\
& \left.\begin{array}{l}
\mathbf{f a}=0.90 \quad \text { (fraction affected }=\text { affected } / \text { total }=\frac{900 \text { miles }}{1000 \text { miles }} \\
\mathbf{f a}=0.10 \quad \text { (fraction unaffected }=\text { unaffected } / \text { total }=\frac{1}{10000} \text { miles } \\
\mathbf{1 0}
\end{array}\right) \\
& \mathbf{s u}=1.11 \quad \text { (speedup for affected) } \\
& \mathbf{T}_{\text {new }}=\frac{\mathbf{f a} \cdot \mathbf{T}_{\mathbf{o l d}}}{\mathbf{S u}}+\overline{\mathbf{f a}} \cdot \mathbf{T}_{\mathbf{o l d}} \\
& \quad=\frac{0.9 \cdot 12}{1.11}+0.1 \cdot 12 \approx 9.73+1.2=\mathbf{1 0 . 9 3} \text { hours }
\end{aligned}
$$

Change \# 2 wrong!

$$
\begin{aligned}
& \mathbf{T}_{\mathbf{o l d}}=\mathbf{1 2} \text { hours } \\
& \mathbf{f a}=0.10 \quad\left(\text { fraction affected }=\text { affected/total }=\frac{100 \text { miles }}{1000 \text { miles }}\right) \\
& \left.\overline{\mathbf{f a}}=0.90 \quad \text { (fraction unaffected }=\text { unaffected/total }=\frac{900 \text { miles }}{1000 \text { miles }}\right) \\
& \mathbf{s u}=2.00 \quad \text { (speedup for affected) } \\
& \mathbf{T}_{\text {new }}=\frac{\mathbf{f a} \cdot \mathbf{T}_{\mathbf{o l d}}}{\mathbf{S u}}+\overline{\mathbf{f a}} \cdot \mathbf{T}_{\text {old }} \\
& \quad=\frac{0.1 \cdot 12}{2}+0.9 \cdot 12 \approx 0.6+10.8=\mathbf{1 1 . 4} \text { hours }
\end{aligned}
$$

Change \# 1 correct

$$
\begin{aligned}
& \mathbf{T}_{\mathbf{o l d}}=\mathbf{1 2} \text { hours } \\
& \left.\mathbf{f a}=0.833 \quad \text { (fraction affected }=\text { affected/total }=\frac{10 \text { hours }}{12 \text { houss }}=\frac{5}{6}\right) \\
& \left.\overline{\mathbf{f a}}=0.167 \quad \text { (fraction unaffected }=\text { unaffected } / \text { total }=\frac{2 \text { hours }}{12 \text { hours }}=\frac{1}{6}\right) \\
& \mathbf{s u}=1.11 \quad \text { (speedup for affected) } \\
& \mathbf{T}_{\mathbf{n e w}}=\frac{\mathbf{f a} \cdot \mathbf{T}_{\mathbf{o l d}}}{\mathbf{S u}}+\overline{\mathbf{f a}} \cdot \mathbf{T}_{\mathbf{o l d}}
\end{aligned}
$$

$$
\approx \frac{0.833 \cdot 12}{1.11}+0.167 \cdot 12 \approx 9+2=\mathbf{1 1} \text { hours }
$$

Change \# 2 correct

$$
\begin{aligned}
& \mathbf{T}_{\mathbf{o l d}}=\mathbf{1 2} \text { hours } \\
& \left.\mathbf{f a}=0.167 \quad \text { (fraction affected }=\text { affected/total }=\frac{2 \text { hours }}{12 \text { hours }}=\frac{1}{6}\right) \\
& \left.\overline{\mathbf{f a}}=0.833 \quad \text { (fraction unaffected }=\text { unaffected/total }=\frac{10 \text { hours }}{12 \text { hours }}=\frac{5}{6}\right) \\
& \mathbf{s u}=2.000 \quad \text { (speedup for affected) } \\
& \mathbf{T}_{\text {new }}=\frac{\mathbf{f a} \cdot \mathbf{T}_{\text {old }}}{\mathbf{S u}}+\overline{\mathbf{f a}} \cdot \mathbf{T}_{\text {old }}
\end{aligned}
$$

$$
\approx \frac{0.167 \cdot 12}{2}+0.833 \cdot 12 \approx 1 .+10=\mathbf{1 1} \text { hours }
$$

Average Cycles Per Instruction

(Weighted) average CPI

$$
\begin{aligned}
& =q_{\text {ALU }} T_{\text {ALU }}+q_{\text {Load }} T_{\text {Load }}+q_{\text {Store }} T_{\text {Store }}+q_{\text {Branch }} T_{\text {Branch }} \\
& =0.5 \cdot 5+0.2 \cdot 8+0.1 \cdot 6+0.2 \cdot 10 \\
& =2.5+1.6+0.6+2.0 \\
& =6.7 \text { cycles approximation: } 20 / 6.7 \approx 3
\end{aligned}
$$

Execution time fraction by instruction type

ALU	$2.5 / 6.7$	$\sim 37.5 \%$
Load	$1.6 / 6.7$	$\sim 24.0 \%$
Store	$0.6 / 6.7$	$\sim 9.0 \%$
Branch	$2.0 / 6.7$	$\sim 30.0 \%$

CPU Time Equation

$$
T_{\text {CPU }}(\text { execution })=\frac{\# \text { instructions }}{\text { execution }} \cdot \frac{\# \text { cycles }}{\text { instruction }} \cdot \frac{\# \text { seconds }}{\text { cycle }}
$$

If $T_{\text {CPU }}($ execution $) \approx 20$ seconds, cycle ${ }_{\text {time }}=10^{-9}$ seconds
20 seconds $\approx \#$ instructions $\cdot 6.7 \cdot 10^{-9}$ seconds
\# instructions $\approx \frac{20}{6.7 \cdot 10^{-9}} \approx 3 \cdot 10^{9}$

$$
\text { instruction }_{\text {time }}=\frac{\# \text { seconds }}{\text { instruction }}=\frac{\# \text { cycles }}{\text { instruction }} \cdot \frac{\# \text { seconds }}{\text { cycle }}
$$

Amdahl's Law 1

$$
T_{\text {new }}=\frac{\text { fraction affected } \cdot T_{\text {old }}}{\text { improvement }}+\text { fraction not affected } \cdot T_{\text {old }}
$$

Improvement X reduces ALU instruction CPI from 5 to 4
$T_{X}=\frac{\text { fraction affected } \cdot 20 \mathrm{sec}}{\text { improvement }}+$ fraction not affected $\cdot 20 \mathrm{sec}$

Amdahl's Law 1 (wrong!)

$$
T_{\text {new }}=\frac{\text { fraction affected } \cdot T_{\text {old }}}{\text { improvement }}+\text { fraction not affected } \cdot T_{\text {old }}
$$

Improvement X
reduces ALU instruction CPI from 5 to 4
$T_{X}=\frac{\text { fraction affected } \cdot 20 \mathrm{sec}}{\text { improvement }}+$ fraction not affected $\cdot 20 \mathrm{sec}$

$$
=\frac{0.5 \cdot 20}{\frac{5}{4}}+0.5 \cdot 20 \mathrm{sec}=8+10 \mathrm{sec}=18 \mathrm{sec}
$$

Amdahl's Law 1

$$
T_{\text {new }}=\frac{\text { fraction affected } \cdot T_{\text {old }}}{\text { improvement }}+\text { fraction not affected } \cdot T_{\text {old }}
$$

Improvement X reduces ALU instruction CPI from 5 to 4
$T_{X}=\frac{\text { fraction affected } \cdot 20 \mathrm{sec}}{\text { improvement }}+$ fraction not affected $\cdot 20 \mathrm{sec}$

$$
=\left(\frac{\frac{2.5}{6.7} 20}{\frac{5}{4}}+\frac{4.2}{6.7} 20\right) \mathrm{sec} \approx\left(\frac{7.5}{1.25}+12.6\right) \mathrm{sec}=18.6 \mathrm{sec}
$$

Amdahl's Law 2

$$
T_{\text {new }}=\frac{\text { fraction affected } \cdot T_{\text {old }}}{\text { improvement }}+\text { fraction not affected } \cdot T_{\text {old }}
$$

Improvement Y reduces Load instruction CPI from 8 to 4
$T_{Y}=\frac{\text { fraction affected } \cdot 20 \mathrm{sec}}{\text { improvement }}+$ fraction not affected $\cdot 20 \mathrm{sec}$

$$
=\left(\frac{\frac{1.6}{6.7} 20}{\frac{8}{4}}+\frac{5.1}{6.7} 20\right) \sec \approx\left(\frac{4.8}{2}+15.3\right) \mathrm{sec}=17.7 \mathrm{sec}
$$

Amdahl's Law 3

$$
T_{\text {new }}=\frac{\text { fraction affected } \cdot T_{\text {old }}}{\text { improvement }}+\text { fraction not affected } \cdot T_{\text {old }}
$$

Improvement Z
reduces Store instruction CPI from 6 to 2
$T_{Z}=\frac{\text { fraction affected } \cdot 20 \mathrm{sec}}{\text { improvement }}+$ fraction not affected $\cdot 20 \mathrm{sec}$

$$
=\left(\frac{\frac{0.6}{6.7} 20}{\frac{6}{2}}+\frac{6.1}{6.7} 20\right) \sec \approx\left(\frac{1.8}{3}+18.3\right) \mathrm{sec}=18.9 \mathrm{sec}
$$

Amdahl's Law 4

$$
T_{\text {new }}=\frac{\text { fraction affected } \cdot T_{\text {old }}}{\text { improvement }}+\text { fraction not affected } \cdot T_{\text {old }}
$$

Improvement W
reduces Branch instruction CPI from 10 to 5
$T_{W}=\frac{\text { fraction affected } \cdot 20 \mathrm{sec}}{\text { improvement }}+$ fraction not affected $\cdot 20 \mathrm{sec}$

$$
=\left(\frac{\frac{2.0}{6.7} 20}{\frac{10}{5}}+\frac{4.7}{6.7} 20\right) \mathrm{sec} \approx\left(\frac{6}{2}+14.1\right) \mathrm{sec}=17.1 \mathrm{sec}
$$

Amdahl's Law

$\mathrm{T}_{\text {old }}=$ affected + unaffected
$\mathrm{T}_{\text {new }}=$ improved + unaffected
SpeedUp = affected / improved

Overall SpeedUp $=P_{\text {new }} / P_{\text {old }}=T_{\text {old }} / T_{\text {new }}$

(fraction affected) $\mathrm{F}_{\mathrm{a}}=$ affected $/ T_{\text {old }}$

(fraction unaffected) $\bar{F}_{a}=$ unaffected $/ T_{\text {old }}$

Amdahl's Law Overall SpeedUp

performance: $P_{x} \equiv \frac{1}{T_{x}} \quad$ relative performance: $\frac{P_{x}}{P_{y}}=\frac{T_{y}}{T_{x}}$

$$
\begin{aligned}
& \frac{P_{X}}{P_{\text {old }}}=\frac{T_{\text {old }}}{T_{X}}=\frac{20}{18.6} \approx 1.075 \\
& \frac{P_{Y}}{P_{\text {old }}}=\frac{T_{\text {old }}}{T_{Y}}=\frac{20}{17.7} \approx 1.130 \\
& \frac{P_{Z}}{P_{\text {old }}}=\frac{T_{\text {old }}}{T_{Z}}=\frac{20}{18.9} \approx 1.058 \\
& \frac{P_{W}}{P_{\text {old }}}=\frac{T_{\text {old }}}{T_{W}}=\frac{20}{17.1} \approx 1.170
\end{aligned}
$$

Amdahl's Law Overall SpeedUp

$\frac{\mathbf{P}_{\text {new }}}{\mathbf{P}_{\text {old }}}=\frac{\mathbf{T}_{\text {old }}}{\mathbf{T}_{\text {new }}}$

Human Addition (Binary)

$\begin{array}{lllllll}1 & 1 & 0 & 1 & 1 & 1 & 0\end{array}$
 1
 0
 0
 0
 0
 1
 0

Binary Addition

$\begin{array}{lllllll}1 & 1 & 0 & 1 & 1 & 1 & 0\end{array}$
 $+$
 1
 0
 0
 0
 0
 10

0

Binary Addition

$$
\begin{array}{r}
11001110 \\
+\quad 1000010 \\
\hline
\end{array}
$$

Binary Addition

$$
\begin{array}{r}
11001110 \\
+\quad 1000010 \\
\hline \\
\\
\\
\\
\end{array}
$$

Binary Addition

$$
\begin{array}{r}
1101110 \\
+\quad 1000010 \\
\hline
\end{array} \begin{array}{r}
110 \\
\\
\\
\\
\end{array} 00000
$$

Binary Addition

$$
\begin{array}{r}
11001110 \\
+\quad 1000010 \\
\hline 001110 \\
\hline
\end{array} \begin{array}{r}
10000
\end{array}
$$

Binary Addition

11001110
$+\quad 000010$
001110
110000

Binary Addition

11001110
$+\quad 1000010$
1001110
01110000

Binary Addition

11001110
$+\quad 1000010$
1001110
100110000

64-Bit Computer Addition

4-Bit Computer Addition

4-Bit Ripple Carry Adder

4-Bit Ripple Carry Adder

4-Bit Ripple Carry Adder

1-Bit Computer Addition (take 1)

Half Adder Truth Table

$a b c s$
 0000
 0101
 1001
 1110

Half Adder Circuit

1-Bit Computer Addition (take 2)

Full Adder

\# abscess $=\overline{\mathrm{ab}} c+\overline{\mathrm{a}} \overline{\mathrm{c}}+\mathrm{a} \overline{\mathrm{b}}+$ - 00000 abc
100101
$c^{\prime}=\bar{a} b c+a \bar{b} c+a b \bar{c}+$
$2010 \quad 0 \quad 1$ abc
$3011 \quad 10$
410001
$\begin{array}{lllll}5 & 101 & 1 & 0\end{array}$
611010
711111

Full Adder

\# abscess $=\overline{\mathrm{ab}} c+\overline{\mathrm{a}} \overline{\mathrm{c}}+\mathrm{a} \overline{\mathrm{b}}+$ - 00000 abc
100101
$c^{\prime}=\bar{a} b c+a \bar{b} c+a b \bar{c}+$
$2010 \quad 0 \quad 1$ abc
$3011 \quad 10$
410001
$\begin{array}{lllll}5 & 101 & 1 & 0\end{array}$
611010
711111

Full Adder

 - 00000 abc

100101
$2010 \quad 0 \quad 1$
301110
410001
$c^{\prime}=\bar{a} b c+a \bar{b} c+a b \bar{c}+$ abc

510110 $a b c+a b c+a b c$

Full Adder

$\# \mathbf{a b c c c} \mathbf{s} \quad s=\overline{\mathrm{ab}} c+\overline{\mathrm{a}} \overline{\mathrm{c}}+\mathrm{a} \overline{\mathrm{b}}+$ - 00000 abc

100101
$2010 \quad 0 \quad 1$
301110
$c^{\prime}=\bar{a} b c+a \bar{b} c+a b \bar{c}+$

410001
$c^{\prime}=\bar{a} b c+a \bar{b} c+a b \bar{c}+$ $a b c+a b c+a b c$
6 11010
$7111111 \quad c^{\prime}=b c+a c+a b$

$s=a b c+\overline{a b} c+\bar{a} b \bar{c}+a \overline{b c}$ $c^{\prime}=a b+a c+b c$

$s=a b c+\overline{a b} c+\bar{a} b \bar{c}+a \overline{b c}$ $c^{\prime}=a b+a c+b c$

Full Adder ??

Full Adder ??

Full Adder Implementation ??

Full Adder Implementation!

\# abcx y z c's

- 000000000

1	001	0	0	0	0	1

2010
100
01
3011
1
01
10
4100
1
00
01
5101
1
0
1
10
6
I ,
11
7
111
0
0
1
0
$\begin{array}{lllll}0 & 1 & 0 & 1 & 1\end{array}$

A Full Adder

A Full Adder

Initial adder — half or full?

Full Initial adder?

Con
Superfluous wires and gates
Pro
General simplicity
Avoid special cases where ever practical Simplifies addition of big integers

Big Integer: $N=x_{k} \cdot J^{k}+\ldots+x_{2} \cdot J^{2}+x_{1} \cdot J^{1}+x_{0} \cdot J^{0}$
Where $\mathrm{J} \equiv 2^{32}$
Like base 10 - but with sixteen billion billion fingers Simplifies subtraction

4-Bit Ripple Carry Adder

4-Bit Ripple Carry Adder

4-Bit Ripple Carry Adder

8-Bit Ripple Carry Adder

64-Bit Ripple Carry Adder

Fixed Width Binary Addition

Non-Negative Numbers Subtraction

$A \geq B$

$\mathbf{A} \sim \mathbf{B} \equiv A-B$ (ordinary arithmetic)
A $<\mathbf{B}$

1) $B \sim B=0$
2) $(A \sim B)+C=(A+C) \sim B$
$\sim \mathbf{B} \equiv \mathbf{0} \sim \mathbf{B}=2^{n}-B=\bar{B}+1 \sim \mathbf{B}$ pseudoinverse of \mathbf{B}

$$
A \sim B \equiv A+\bar{B}+1
$$

Fixed Width Binary Addition

Negative Number Representation

Alternatives

1. Sign-magnitude

How would it help
2. Bias

Complicates arithmetic
3. 1's complement

Too many zeros
4. 2's complement

Negative Number Representation

Unsigned numbers:
$0 . .2^{N}-1$
Signed number alternatives

1. Sign-magnitude: $\quad-2^{\mathrm{N}-1}-1 . .2^{\mathrm{N}-1}-1$ How would this help?
2. Bias:
-bias .. $2^{\mathrm{N}}-1$ - bias
Complicates arithmetic
(a-bias + b-bias) $=(a+b)$-bias)-bias
3. 1's complement:

$$
-2^{\mathrm{N}-1}-1 . . \quad 2^{\mathrm{N}-1}-1
$$

+0 and -0
4. 2's complement:

$$
-2^{\mathrm{N}-1} . .2^{\mathrm{N}-1}-1
$$

Negative Number Representation

\#	binary	sign magnitude	bias (8)	1 's complement	2's complement
0	0000	+ 0	-8	0	0
1	0001	+1	-7	1	1
2	0010	+ 2	-6	2	2
3	0011	+ 3	-5	3	3
4	0100	+4	-4	4	4
5	0101	+ 5	-3	5	5
6	0110	+ 6	-2	6	6
7	0111	$+7$	-1	7	7
8	1000	- 0	0	-7	-8
9	1001	-1	1	-6	-7
A	1010	- 2	2	-5	-6
B	1011	- 3	3	-4	-5
C	1100	-4	4	-3	-4
D	1101	- 5	5	-2	-3
E	1110	-6	6	-1	-2
F	1111	- 7	7	-0	-1

10's Complement Arithmetic

The 9's complement, d , of a decimal digit d is $9-\mathrm{d}$ The 9's complement, X, of a 4 -digit X is $9999-\mathrm{X}$
The 10's complement, X, of X is $X+1$

$$
X=X+1=9999-X+1=10000-X
$$

convention: X is positive and Y is negative iff $0 \leq X<5000 \leq Y<10000$
$-Y \equiv Y$ and

$$
X-Y=X+Y \text { unless }
$$

Overflow $-\operatorname{sign}(X)=\operatorname{sign}(Y) \neq \operatorname{sign}(X+Y)$

$$
-\operatorname{sign}(X) \neq \operatorname{sign}(Y)=\operatorname{sign}(X-Y)
$$

10's Complement Example

$1000=8999$
$1000=8999+1=9000$
$3000+1000=12000 \approx 2000=3000-1000$
$-200 \approx 10000-200=9799+1=200+1=200$
$-300 \approx 10000-300=9699+1=300+1=300$
$100+300=9800=200 \approx 100-300$
overflow
$4000+2000=6000=5999+1=4001+1 \neq-4001$

2's Complement Arithmetic

The 1 's complement, \bar{b}, of a binary bit b is $1-\mathrm{d}$
The 1 's complement, \bar{X}, of a 4 -bit X is $1111-X$
The 2's complement, \bar{X}, of X is $\bar{X}+1$

$$
\bar{X}=\bar{X}+1=1111-X+1=10000-X
$$

convention: X is positive and Y is negative iff

$$
0 \leq X<2^{N-1} \leq Y<2^{N}
$$

$-Y \equiv \bar{Y}$ and $\quad X-Y=X+\bar{Y}$ unless
Overflow $-\operatorname{sign}(X)=\operatorname{sign}(Y) \neq \operatorname{sign}(X+Y)$
$-\operatorname{sign}(X) \neq \operatorname{sign}(Y)=\operatorname{sign}(X-Y)$

Negative Number Representation

$\#$	binary	sign magnitude	bias (-7)	1's complement	2's complement
0	0000	+0	-7	0	0
1	0001	+1	-6	1	1
2	0010	+2	-5	2	2
3	0011	+3	-4	3	3
4	0100	+4	-3	4	4
5	0101	+5	-2	5	5
6	0110	+6	-1	6	6
7	0111	+7	-0	7	7
8	1000	-0	1	-7	-8
9	1001	-1	2	-6	-7
A	1010	-2	3	-5	-6
B	1011	-3	4	-4	-5
C	1100	-4	5	-3	-4
D	1101	-5	6	-2	-3
E	1110	-6	7	-1	-2
F	1111	-7	8	-0	-1

Basic Processor Model

Basic Processor Model

Arithmetic / Logical Unit

Building Blocks
AND, OR, and NOT gates
Inverters, Decoders, Multiplexers
Inputs (operands): A and \mathbf{B} buses
Output (result): C bus
Logical
Bitwise: $\bar{A}, A \& B, A \mid B, A^{\wedge} B, A \uparrow B, A \downarrow B, \ldots$
Arithmetic
$A+B, A-B, A \cdot B, A \operatorname{div} B, A \bmod B$
Comparison
$A<B, A=B, A \geq B$, etc. and $X<0, X=0, X \geq 0$, etc.

TINY Arithmetic / Logical Unit

Building Blocks
AND, OR, and NOT gates
Inverters, Decoders, Multiplexers
Inputs (operands): A and \mathbf{B} buses
Output (result): C bus
Logical
Bitwise: $\bar{A}, \mathbf{A} \& B, A \mid B, A^{\wedge} B, A \uparrow B, A \downarrow B, \ldots$
Arithmetic

$$
A+B, A-B, A \cdot B, A \operatorname{div} B, A \bmod B
$$

Comparison
$A<B, A=B, A \geq B$, etc. and $X<0, X=0, X \geq 0$, etc.

Muxes, Buses, and ALU

ALU inputs (operands): A and B buses
ALU output (result): C bus
Logical
Bitwise: $\bar{A}, A \& B, A \mid B, A^{\wedge} B, A \uparrow B, A \downarrow B, \ldots$
Arithmetic

$$
A+B, A-B, A \cdot B, A \operatorname{div} B, A \bmod B
$$

Comparison

$$
\mathrm{A}<\mathrm{B}, \mathrm{~A}=\mathrm{B}, \mathrm{~A} \geq \mathrm{B}, \text { etc. and } \mathrm{X}<0, \mathrm{X}=0, \mathrm{X} \geq 0 \text {, etc. }
$$

Combinational building blocks
AND, OR, and NOT gates
Inverters, Decoders, Multiplexers

Inverters, Decoders, Multiplexer

Inverter: select data input or its negation
1 data input
1 selector input
1 output
Decoder: select unique output to be 1 (true)
N selector inputs
2^{N} outputs
Multiplexer: select unique data input to be output
2^{N} data inputs
N selector inputs
1 output

The TINY Computer

The TINY Computer

Main Memory 65536 16-bit words $\mathrm{M}[\mathrm{n}]-\mathrm{n}^{\text {ti }}$ memory address ${ }^{\wedge} \mathrm{M}[\mathrm{n}]$ - content of $\mathrm{M}[\mathrm{n}]$
Register File 16 16-bit "registers" 15 real registers: $\quad \$ 1 \ldots \$ \mathrm{~F}$ 1 pseudo-register: $\quad \$ 0 \quad[\$ 0]=0$

Immediate values

In - n-bit signed int
Un - n-bit unsigned int
CC - 4-bit condition code

Instructions ${ }^{\ominus}$

ADD	$r T \leftarrow[r A]+[r B]^{1.2}$
AND	$r T \leftarrow[r A] \&[r B]^{1,3}$
BRC	$\mathrm{PC} \leftarrow[\mathrm{rA}]+\mathrm{U4+1}$ iff CC
BRU	$r L \leftarrow P C, P C \leftarrow[r A]+[r B]^{1}$
LDI	$r T \leftarrow{ }^{\wedge} \mathrm{M}[[\mathrm{rA}]+\mathrm{U4+1}]^{1}$
LDX	$r T \leftarrow{ }^{\wedge} M[[r A]+[r B]]^{1}$
LIH	$\mathrm{rT}_{15.8} \leftarrow 18{ }^{1}$
NOR	$\mathrm{rT} \leftarrow \overline{[r A]}]\left[\mathrm{rB]}^{1.3}\right.$
SLL	$r T \leftarrow[r A] \ll I 4{ }^{1.3}$
SRS	$r T \leftarrow[r A] \gg 14{ }^{1.3}$
SRU	$r T \leftarrow[r A] \ggg 14{ }^{1.3}$
STI	$M[[r A]+U 4+1] \leftarrow[r S]$
STX	$\mathrm{M}[\mathrm{ra}]+[r \mathrm{~B}]] \sim[r \mathrm{~S}]$
SUB	$r T \leftarrow[r A]-[r B]^{1.2}$
SYS	system call ${ }^{4}$

Arithmetic / Logical				
0100	ADD	rT	rA	rB
0101	SUB	rT	rA	rB
0110	AND	rT	rA	rB
0111	NOR	rT	rA	rB

Shift / Load Immediate				
1000	LIH	rT	I8	
1001	SLL	rT	rA	U4
1010	SRS	rT	rA	U4
1011	SRU	rT	rA	U4

Load/Store				
0111	LDI	rT	rA	U4
0110	LDX	rT	rA	rB
0101	STI	rS	rA	U4
0100	STX	rS	rA	RB

Branch/Special					
0011	BRC	C	rA	U4	
0010	BCU	rL	rA	rB	
0001	reserved				
0000	SYS	U12			

Condition Codes		
0000	true	TT
0001	false	FF
0010	$A=B$ signed	EQ
0011	A $\quad \mathrm{B}$ signed	NE
0100	$\mathrm{A}<\mathrm{B}$ signed	LT
0101	A $\quad \mathrm{B}$ signed	GE
0110	A B signed	LE
0111	$\mathrm{A}>\mathrm{B}$ signed	GT
1000	true	
1001	false	
1010	$A=B$ unsigned	
1011	A B unsigned	
1100	$\mathrm{A}<\mathrm{B}$ unsigned	LTU
1101	A B unsigned	GEU
1110	A B unsigned	LEU
1111	A > Bunsigned	GTU

Notes

${ }^{0} \mathrm{PC} \leftarrow \mathrm{PC}+1$ before instruction execution
${ }^{1} \$ 0$ not changed
${ }^{2}$ Determines flags: $\mathbf{z}, \mathrm{n}, \mathrm{c}, \mathrm{o}$
${ }^{3}$ Determines flags: \mathbf{z}, \mathbf{n},
${ }^{4}$ No op 46 U12 $=0$

