CMP 334: Seventh Class

Performance
HW 5 solution
Averages and weighted averages (review)
Amdahl's law

Ripple-carry adder circuits
Binary addition
Half-adder circuits
Full-adder circuits

Subtraction, negative numbers, signed arithmetic
A-B=A+-B

For next class: HW 6; read A.3-4, 2.1-5, 3.1-2

HW 5: Performance Problems

1) Computer A has a 5 GHz clock and executes program P in 30 seconds
with an average CPI (cycles per instruction) of 3.0. How many
instructions does it execute for program P?

2) Computer B has a 2 GHz clock. It executes P with the same number of
instructions as computer A with an average CPI 1.0. How long does it
take to execute P?

3) Compare the performance of computer B and computer A on program
P. Which is faster? by how much?

4) A new compiler for computer A compiles program P so that it executes
only half as many instructions. Unfortunately, the CPI for computer A on
these instructions is 4.0. How long does it take to execute the newly
compiled program ?

5) Compare the performance of computer B (with the old compiler) to
computer A (with the new compiler) on program P. Which 1s faster? by
how much?

Performance Equations

Performance — inverse of execution time

lati P, T,
relative performance: > T

y X

performance: P_= I

CPU time equation

#nstructions ~ #cycles #seconds
execution 1nstruction cycle

T .y execution) =

Processor Performance Equations

‘ T, = #mnstructions, - CPI, - cycleTime, ‘

instructions , - CPI,,
T, =
clockRate ,,
Py T, #imnstructionsy - CPI, - cycleTime,
P, T, #instructions, - CPI, - cycleTime,

P, T, # 1nstructionsy, - CPI; - clockRate,,
P, T, # mstructions, - CPI, - clockRate,

HW 5.1 Instruction Count

Computer A has a 5 GHz clock and executes program P in 30 seconds
with an average CPI (cycles per instruction) of 3.0. How many
instructions does it execute for program P?

instructions , - CPI
4 clockRate ,

instructions , - 3.0 cycles/ instruction

5 GHz
30 seconds - 5 - 10° eyeles /| second
3.0 eyefes / instruction

= 50 - 10° instructions

30 seconds =

1nstructions ,

HW 5.2 Execution Time

Computer B has a 2 GHz clock. It executes P with the same number of
instructions as computer A (50-10° instructions) with an average CPI 1.0.
How long does it take to execute P?

instructions , - CPI,
. clockRate ,

50 - 10” instructions - 1.0 cycles | instruction
2 GHz
50 - 10° instructions - | eyeles | instruction
2 - 10° eyetes | second

= 25 seconds

HW 5.3 Relative Performance

Compare the performance of computer B and computer A on program P.
Which 1s faster? by how much?

P, T, 25 seeconds '

B i1s 1.2 times faster than A.

HW 5.4 Execution Time

A new compiler for computer A compiles program P so that it executes
only half as many instructions. Unfortunately, the CPI for computer A on
these nstructions 1s 4.0. How long does it take to execute the newly
compiled program ?

instructions ,, - CPI .
clockRate .,

1
5 # instructions , - 4.0 - cycles / instruction

clockRate ,
0.5-50 - 10 instruetions - 4.0 - eyeles | instruction
5 - 10° eyetes | second

= % seconds = 20 seconds

HW 5.5 Relative Performance

Compare the performance of computer B (with the old compiler) to
computer A' (A with the new compiler) on program P. Which is faster?
by how much?

P, T, 25 seconds

— = — = = 1.25
P, T, 20 seeonds
A' 1s 1.25 times faster than B.
P, T
Far_ Ya 30 seconds _ 15

P, T, 20 seconds

A'1s 1.5 times faster than A.

Averages and Weighted Averages

Given values: {v,, v,, ... v, | & weights: {w,, w,, ... w,]

N
Zvi
- =]

average: v =
N

N N
total weight: W = Z w, normalized weight: q,= % (Z g =1)
i=1 i

Typical Instruction Statistics

Instruction types, frequencies, and execution times

50% ALU instructions 5 CPI
30% Memory instructions
20% Load 8 CP
10% Store 6 CP

20% Branch instructions 10 CP

Average Cycles Per Instruction

(Weighted) average CPI

qLoadTLoad + qStoreTStore +

= qALUTALU +

= ©.55 + 0.2-8
+ 1.6
= 6.7 cycles

= 2.5

Execution time fraction by instruction type

ALU
Load
Store
Branch

+ 0.16
+ 0.6

+

+

approximation:

2.5/ 6.7

1.
0.
2.

© o O

/
/
/

o O O

NN

~

~

~

~

q Branch =~ Branch

0.210
2.0
20 / 6.7

37.5%
24 .0%
9.0%
30.0%

~
~

3

CPU Time Equation

mstructions ~ #cycles # seconds
execution Instruction cycle

T .yl execution) =

If T, (execution) ~ 20 seconds, cycle, .= 10" seconds

time

20 seconds ~ # instructions - 6.7 10~ seconds

nstructions ~ ~ 310

. . # seconds #cycles # seconds
nstruction,,.. = - = e
instruction mstruction cycle

Performance Equations

Amdahl's law

fraction affected - T ,
= : ™+ fraction not affected - T,,,
improvement

new

Amdahl's Law

old time (12)
affected (8) : unaffected (4)

SpeedUp (1.6)

improved (5) unaffected (4) :
o o _ _rewtme)_ _ _ _ _ _ .
T, = affected + unaffected T T T T T T —
T ., =improved + unaffected LU e—
SpeedUp = affected / improved _

Overall SpeedUp=P_/P_ =T /T |[EEOrrr e
(fraction affected) Fa = affected/ T_, T i—
EEEse———

(fraction unaffected) ?a = unaffected / T_,

Improving Race Car Performance

miles miles/hours
cruising 900 920
other 100 50

Race time = 900/90 + 100/50 = 12 hours
Change #1: 1.11 x improvement in cruising speed
Change #2: 2.00 x improvement in other speed

| I
—

Change #

T ,, = 12 hours

fa = 0.90 (fraction affected = affected/total = 1(9)88 EEZZ)
fa = 0.10 (fraction unaffected = unaffected/total = 1(1)88 Eﬂ:)

su = 1.11 (speedup for affected)
fa-T
. old PO
Tnew IR Su + fa- Told
— 09-12
1.11

+ 0.1-12 =~ 9.73 + 1.2 = 10.93 hours

N

Change #

T ,; = 12 hours
100 miles)

fa = 0.10 (fraction affected = affected/total = - "=
fa = 0.90 (fraction unaffected = unaffected/total = 1(9)38 Eﬁ:)
su = 2.00 (speedup for affected)

fa-T 4 _
Tnew — su + fa) Told
— 0.1-12
2

+ 09-12 ~ 0.6 +10.8 = 11.4 hours

Ghange#4

wrong!

T,, = 12 hours

900 miles

su = 1.11 (speedup for affected)

B fa-T 4

—
|

+ fa-T
su old

Change#2

wrong!

T ,, = 12 hours

100 miles

fa = 0. r
su = 2.00 (speedup for affected)
fa-T _
. old
Tnew IR Su + fa- Told

correct

T ,, = 12 hours

fa = 0.833 (fraction affected = affected/total = }g Egﬁﬁ = %)
fa 1
<)

fa = 0.167 (fraction unaffected = unaffected/total = -2hous _

12 hours
su = 1.11 (speedup for affected)

fa-T _
Tnew J— Su + fa ¢ TOld
~ 983312 b6 19 ~ 942 = 11 hours

1.11

correct

T, = 12 hours

fa = 0.167 (fraction affected = affected/total = -2hous _ 1

12 hours 6
fa = 0.833 (fraction unaffected = unaffected/total = 1ohous _ 5y

su = 2.000 (speedup for affected)

12 hours 6
fa-T _
. old
Tnew — - + fa) Told

. ‘“6;12 L 0833-12 ~ 1.4+ 10 = 11 hours

Average Cycles Per Instruction

(Weighted) average CPI

qLoadTLoad + qStoreTStore +

= qALUTALU +

= ©.55 + 0.2-8
+ 1.6
= 6.7 cycles

= 2.5

Execution time fraction by instruction type

ALU
Load
Store
Branch

+ 0.16
+ 0.6

+

+

approximation:

2.5/ 6.7

1.
0.
2.

© o O

/
/
/

o O O

NN

~

~

~

~

q Branch =~ Branch

0.210
2.0
20 / 6.7

37.5%
24 .0%
9.0%
30.0%

~
~

3

CPU Time Equation

mstructions ~ #cycles # seconds
execution Instruction cycle

T .yl execution) =

If T, (execution) ~ 20 seconds, cycle, .= 10" seconds

time

20 seconds ~ # instructions - 6.7 10~ seconds

nstructions ~ ~ 310

. . # seconds #cycles # seconds
nstruction,,.. = - = e
instruction mstruction cycle

Amdahl's Law 1

fraction affected - T,

T, = , + fraction not aftected - T,
improvement

Improvement X
reduces ALU instruction CPI from 5 to 4

_ fraction affected - 20 sec

: + fraction not affected - 20 sec
improvement

I'y

Amdahl's Law 1 (wrong!)

fraction affected - T,

T, = , + fraction not aftected - T,
improvement

Improvement X
reduces ALU instruction CPI from 5 to 4

_ fraction affected - 20 sec

: + fraction not affected - 20 sec
improvement

I'y

= 0'55' el +0.5-20 sec = 8 +10 sec = 18 sec

4

Amdahl's Law 1

fraction affected - T,

T.,= , + fraction not affected - T,
improvement

Improvement X
reduces ALU instruction CPI from 5 to 4

_ fraction affected - 20 sec

T, , + fraction not affected - 20 sec
improvement
2.5
— 20
= 6'7§ + 23 20| sec ~ (17.'255 + 12.6| sec = 18.6 sec

Amdahl's Law 2

fraction affected - T,

T.,= , + fraction not affected - T,
improvement

Improvement Y
reduces Load instruction CPI from & to 4

fraction affected - 20 sec

T, = _ + fraction not affected - 20 sec
improvement
1.6
— 20
= 6°7§ -I-% 20 |sec ~ (42—8-|— 15.3)S€C = 17.7 sec
4

Amdahl's Law 3

fraction affected - T,

T.,= , + fraction not affected - T,
improvement

Improvement Z
reduces Store instruction CPI from 6 to 2

fraction affected - 20 sec

T, = _ + fraction not affected - 20 sec
improvement
0.6
— 20
= 6°7§ -I—% 20 |sec ~ 13—8 + 18.3)Sec = 18.9 sec
2

Amdahl's Law 4

fraction affected - T,

T.,= , + fraction not affected - T,
improvement

Improvement W
reduces Branch instruction CPI from 10 to 5

_ fraction affected - 20 sec

T, : + fraction not affected - 20 sec
improvement
2.0
— 20
= 6?_0 + 2—; 20 |sec ~ g—l— 14.1)S€C = 17.1 sec

Amdahl's Law

old time (12)
affected (8) : unaffected (4)

SpeedUp (1.6)

improved (5) unaffected (4) :
o o _ _rewtme)_ _ _ _ _ _ .
T, = affected + unaffected T T T T T T —
T ., =improved + unaffected LU e—
SpeedUp = affected / improved _

Overall SpeedUp=P_/P_ =T /T |[EEOrrr e
(fraction affected) Fa = affected/ T_, T i—
EEEse———

(fraction unaffected) ?a = unaffected / T_,

Amdahl's Law Overall SpeedUp

1 P T

performance: P_= relative performance: — = —=

y

Py T, 20

— = = ——~ 1.075
Pold TX 186
P T
Y: old 20 1 130
Pold TY 177
P T

Z _ old 20 1058

Amdahl's Law Overall SpeedUp

Pnew . Told
1)()ld - Tnew
_ Told
fa-T 4 _
+ fa- T,
Su
_ 1
| &
Su

Human Addition (Binary)

1101110
+ 1000010

Binary Addition

11701110

1000010

+

Binary Addition

11701110

1000010

+

0 0O

Binary Addition

11701110

1000010

+

0 0O

Binary Addition

Binary Addition

Binary Addition

Binary Addition

Binary Addition
11011180
+ 1000010

10110000

64-Bit Computer Addition

—S

N :
y 64-bit adder "

1)

(o2

QO T 99 T 9 T 9

N N - - o o

w

w

4-Bit Computer Addition

4-bit adder

=) wm Nc- Nm _\c- —\m cc- om

w

4-Bit Ripple Carry Adder

1-bit adder

1-bit adder

| c

— 5,

S,

N N - - o o

QO T 99 T 9 T 9

w

(o2

w

4-Bit Ripple Carry Adder

1-bit adder e

1-bit adder e

1-bit adder]

1-bit adder

N N - - o o

QO T 99 T 9 T 9

w

(o2

w

4-Bit Ripple Carry Adder

half adder e

full adder

fuu adder]

full adder

1-Bit Computer Addition (take 1)

half adder

- = 0O O 9Q

Half Adder Truth Table

ab _
ab + ab

O

- O -~ 0O O

- O O O O

O = =2 0O O
o
11

Half Adder Circuit

1-Bit Computer Addition (take 2)

C

a_

b — full adder j

Full Adder

s = abc + abc + abc +
abc

c' = abc + abc + abc +
abc

Full Adder

s = abc + abc + abc +
abc

c' = abc + abc + abc +
abc

Full Adder

s = abc + abc + abc +
abc

c' = abc + abc + abc +
abc

= abc + abc + abc +
abc + abc + abc

Full Adder

s S =abc+abc + abc +
0 abc

1 - — —

3 c'=abc + abc + abc +
0 abc

1 ¢ =abc +abc + abc +
g abc + abc + abc

1

c =bc+ac+ ab

s = abc + abc + abc + abc
c' =ab + ac + bc

|C

a_
b

full adder

C

Q)

s = abc + abc +

abc + abc

c =ab + ac + bc

))
y A

C

full adder
!

d

b

Full Adder ?7?

C

half adder

half adder
I b

d

b

Full Adder ?7?

C

half adder

half adder
1 <

Full Adder Implementation 7?7

#abc xy zc' s

a—-l_ aaaaaaaa il
o 000 0 0 o | i L s
1 00 1 0 1 E?Ll
‘ 010 01 u v ¢ s
3 011 1 0 0 0 0 0
+ 100 01 00
5 101 1 0 1 1 1 0
6 110 1 0 C=uv _

S = uUv +uv
7 111 1 1

Full Adder Implementation!

O 0 0 0 1

1
1
1

001

0O 0 0 1

010
011

u v C S

O 0 0 O

1
0O 0 0 1
0
110 0 1
111

0

100
101

C
S

0
1

0 1

= uv + uv

0 1

0 1

A Full Adder

aaaaaaaaa

aaaaaaaaa

A Full Adder

N N - - o o

Q T 99 T 99 T 9

w

(o2

w

Initial adder — half or full?

half adder ? m—————

full adder

fuu adder]

full adder

Full Initial adder?

Con
Superfluous wires and gates

Pro

General simplicity
Avoid special cases where ever practical
Simplifies addition of big integers
Big Integer: N=x-J“+ ... +x,J*+x-J"+x-J°
Where J = 2°2
Like base 10 — but with sixteen billion billion fingers

Simplifies subtraction

N N - - o o

Q T 99 T 99 T 9

w

(o2

w

4-Bit Ripple Carry Adder

C4

full adder

=) wm Nc- Nm _\c- -\m oc- om

w

4-Bit Ripple Carry Adder
|

j 4-bit adder
full adder E—— — — ———f—
full adder E————— —— — ——
full adder E———

full adder

|

o 9

o SN T S T D

N N - - o o

w

w

4-Bit Ripple Carry Adder

C, |

4-bit adder

C_1

3-Bit Ripple Carry Adder

8-bit adder

0000000000000000

64-Bit Ripple Carry Adder

a, =——

— S
b0 — 0
" 64-bit adder "
63: — 863

63

Fixed Width Binary Addition

1110
+ 0 010

Fixed Width Binary Addition

1110
+ 0 010

Fixed Width Binary Addition
1110
+ 0010

0 0O

Fixed Width Binary Addition

1110
+ 0 010

Fixed Width Binary Addition

Fixed Width Binary Addition

1
Carry out /

Fixed Width Binary Addition

1
Carry out /

Non-Negative Numbers Subtraction

AzB

A ~ B £ A - B (ordinary arithmetic)
A<B

1) B~B=0

2) (A~B)+C=(A+C)~B
~B=0~B=2"—-B=B+ 1 ~B pseudoinverse of B

A~B = A+B+1

Fixed Width Binary Addition

Negative Number Representation

Alternatives

1. Sign-magnitude
How would it help

2. Bias

Complicates arithmetic

3. 1's complement

Too many zeros

4. 2's complement

Negative Number Representation

Unsigned numbers: 0..2N-1

Signed number alternatives

1. Sign-magnitude: —2N1—-1 ., 2N
How would this help?

2. Bias: —bias .. 2N-1 — bias

Complicates arithmetic
(a-bias + b-bias) = (a + b)-bias)-bias

3. 1's complement: —2N1-1 . 2N1-1
+0 and -0

4. 2's complement: 2N 2N

Negative Number Representation

binary sigh magnitude bias (8) 1's complement 2's complement
o 0000 +0 -8 0 0
1 0001 + 1 -7 1
2 0010 + 2 -6 2 2
3 0011 +3 -5 3 3
4 0100 +4 -4 4 4
5 0101 + 5 -3 5 5
6 0110 + 6 -2 6 6
7 0111 +7 -1 7 7
8 1000 -0 0o -7 -8
9 1001 -1 1 -6 -7
A 1010 -2 2 -5 -6
B 1011 -3 3 -4 -5
Cc 1100 -4 4 -3 -4
D 1101 -5 5 -2 -3
E 1110 -6 6 -1 -2
F 1111 -7 7 -0 -1

10's Complement Arithmetic

The 9's complement, d, of a decimal digitd is 9 — d
The 9's complement, X, of a 4-digit X is 9999 — X

The 10's complement, X, of X is X + 1
X=X+1=9999 — X +1 = 10000 — X

convention: X is positive and Y is negative iff
0<X<5000=<Y<10000

-Y =Y and X =Y =X+Y unless

Overflow — sign(X) = sign(Y) # sign(X +Y)
— sign(X) # sign(Y) = sign(X —-Y)

10's Complement Example

1000 = 8999
1000 = 8999 + 1 = 9000
3000 + 1000 = 12000 = 2000 = 3000 — 1000

-200 = 10000 —200 =9799 + 1= 200 + 1 =200
-300 = 10000 — 300 =9699 + 1= 300 + 1 =300
100 + 300 = 9800 = 200 = 100 — 300

overflow
4000 + 2000 = 6000 = 5999 + 1 = 4001 + 1 # -4001

2's Complement Arithmetic

The 1's complement, b, of a binary bitbis 1-d

The 1's complement, X, of a 4-bit Xis 1111 - X
The 2's complement, X, of X is X + 1

X=X+1=1111-X+1=10000 - X

convention: X is positive and Y is negative iff
O0<X<2M <Y <N

-Y =Y and X-=Y =X+Y unless

Overflow — sign(X) = sign(Y) # sign(X +Y)
— sign(X) # sign(Y) = sign(X —-Y)

Unsigned Integers

00000000 = N _
mi = 20 -1 N=-Bit Integers
10000000 = QN (N = 8)
01111111 = N1 _ 1

00000101

00000100 = 4= 22

00000011 = 3= 22 —1 '

00000010 = 2= 2 o

00000001 = 1= 20=21-19

00000000 = 0= 20 —1 =

11111111 = —1 = —20 o

11111110 = 2=-2" = 20— 1 &

11111101 = -3 =-2" —1 N

11111100 = —4 = 22

11111011 = -5=-22 _1

10000000 = N

01111111 = N1 _ 1

00000000 = 2N
11111111 =N _1

Negative Number Representation

binary sigh magnitude bias (-7) 1's complement 2's complement
0 0000 +0 -7 0 0
1 0001 +1 -6 1
2 0010 + 2 -5 2 2
3 0011 +3 -4 3 3
4 0100 +4 -3 4 4
5 0101 +5 -2 5 5
6 0110 + 6 -1 6 6
7 0111 +7 -0 7 7
8 1000 -0 1 -7 -8
9 1001 -1 2 -6 -7
A 1010 -2 3 -5 -6
B 1011 -3 4 -4 -5
Cc 1100 -4 5 -3 -4
D 1101 -5 6 -2 -3
E 1110 -6 7 -1 -2
F 1111 -7 8 -0 -1

Basic Processor Model

registers
MUX PI'S
ALU
MUX

PC e

Basic Processor Model

registers

PC

Combinational Core

MUX bus
0 ALU
B

IR

Arithmetic / Logical Unit

Building Blocks

AND, OR, and NOT gates
Inverters, Decoders, Multiplexers

Inputs (operands). A and B buses
Output (result). C bus

Logical

Bitwise: A, A&B,A|B, AAB,A1B,A|B, ..
Arithmetic

A+B,A-B,A+B,AdivB, AmodB
Comparison

A<B,A=B,A=2B,etc. and X<0,X=0, X=0, etc.

TINY Arithmetic / Logical Unit

Building Blocks

AND, OR, and NOT gates
Inverters, Decoders, Multiplexers

Inputs (operands). A and B buses

Output (result): C bus
Logical
Bitwise: A, A & B, A|B, ..
Arithmetic
A+ B, A-B,

Comparison
A<B,A=B,Az=zB,etc. and X<0,X=0,X=0, etc.

Muxes, Buses, and ALU

ALU inputs (operands). A and B buses

ALU output (result). C bus

Logical

Bitwise: A, A&B,A|B, AAB,A1B,A|B, ..
Arithmetic

A+B,A-B,A+B,AdivB, AmodB
Comparison

A<B,A=B,A=2B,etc. and X<0,X=0,X=0, etc.

Combinational building blocks
AND, OR, and NOT gates
Inverters, Decoders, Multiplexers

Inverters, Decoders, Multiplexer

Inverter. select data input or its negation
1 data input

1 selector input

1 output

Decoder: select unique output to be 1 (true)
N selector inputs
2N outputs

Multiplexer: select unique data input to be output
2N data inputs
N selector inputs
1 output

The TINY Computer

registers
00000000

PC

ALU

IR

OCOZN

MAR

MDR

0x0000

Oxffff

The TINY Computer

registers
00000000

PC

ALU

IR

OCOZN

MAR

MDR

0x0000

Oxffff

F" W Instruction Set Architecture

Main Memory 65536 16-bit words
M[n] —n® memory address
“"M[n] —contentofM[n]

Register File

16 16-bit “registers”

15 real registers: 31 ... 8F

1 pseudo-register: $0

[$0]1 = 0O

Immediate values
In — n-bit signed int

Un — n-bit unsigned int
CcC — 4-bit condition code

Instructions ®

ADD
AND
BRC
BRU
LDI
LDX
LIH

NOR
SLL
SRS
SRU
STI
STX
SUB
SYS

rT — [rA]+[rB] **

rT — [rA]&[rB] -

PC .~ [rA]+U4+1 g CC

rL — PC, PC — [rA]+[rB]!
rT « “M[[rA]+U4+1] *

rT « “M[[rA]+[rB]] *

rT ~ 181

15. .8

rT — [rAT[[rB] *?
rT — [rA]<<I4 3

rT — [rA]>>14 13

rT « [rA]>>>14 13
MI[rA]l+U4+1] ~ [rS]
MOIrAT+[rB]] « [rS]
rT — [rA]-[rB] *?
system call*®

Arithmetic / Logical

Reference Data Card

oio0 |ADD| T rA rB

o101 |[SUB| T rA rB

o110 |[AND| T rA rB

0111 [NOR| T rA rB

Shift / Load Immediate

1000 | LIH| T I8

1001 |[SLL| rT rA U4

1010 |SRS| T rA U4

1011 |[SRU| T rA U4

Load/Store

0111 |LDI rT rA U4

o110|LDX rT rA rB

o101 |STI rs rA U4

o100|STX rs rA RB

Branch/Special
oo11| BRC cC rA U4
oo10| BCU| rL rA rB
0001 reserved
oooo | SYS Ul2

Condition Codes
0000 true TT
0001 false FF
0010 A = Bsigned EQ
0011 A B signed NE
0100 A < Bsigned LT
0101 A B signed GE
0110 A B signed LE
0111 A > Bosigned GT
1000 true
1001 false
1010 A = B unsigned
1011 A B unsigned
1100 A < B unsigned LTU
1101 A B unsigned GEU
1110 A B unsigned LEU
1111 A > B unsigned GTU
Notes

®PC —~ PC+1 before instruction execution
! $0 not changed

? Determines flags: z, n, ¢, o

? Determines flags: z, n,

* Noop ¢ Ul2=0

