

CMP 334: Seventh Class

Performance
HW 5 solution
Averages and weighted averages (review)
Amdahl's law

Ripple-carry adder circuits
Binary addition
Half-adder circuits
Full-adder circuits

Subtraction, negative numbers, signed arithmetic
A – B = A + –B

For next class: HW 6; read A.3-4, 2.1-5, 3.1-2

HW 5: Performance Problems

1) Computer A has a 5 GHz clock and executes program P in 30 seconds
with an average CPI (cycles per instruction) of 3.0. How many
instructions does it execute for program P?

2) Computer B has a 2 GHz clock. It executes P with the same number of
instructions as computer A with an average CPI 1.0. How long does it
take to execute P?

3) Compare the performance of computer B and computer A on program
P. Which is faster? by how much?

4) A new compiler for computer A compiles program P so that it executes
only half as many instructions. Unfortunately, the CPI for computer A on
these instructions is 4.0. How long does it take to execute the newly
compiled program ?

5) Compare the performance of computer B (with the old compiler) to
computer A (with the new compiler) on program P. Which is faster? by
how much?

Performance Equations

Performance – inverse of execution time

CPU time equation

Amdahl's law

performance: P x ≡
1
T x

relative performance:
P x

P y

=
T y

T x

T CPU (execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Processor Performance Equations

TX = # instructionsX ⋅CPIX ⋅cycleTimeX

TX =
instructionsX ⋅CPIX

clockRateX

PX

PY

=
TY

TX

=
instructionsY ⋅CPIY ⋅cycleTimeY

instructionsX ⋅CPIX ⋅cycleTimeX

PX

PY

=
TY

TX

=
instructionsY ⋅CPIY ⋅clockRateX

instructionsX ⋅CPIX ⋅clockRateY

HW 5.1 Instruction Count

Computer A has a 5 GHz clock and executes program P in 30 seconds
with an average CPI (cycles per instruction) of 3.0. How many
instructions does it execute for program P?

TA =
instructionsA⋅CPIA

clockRateA

30 seconds =
instructionsA⋅3.0 cycles / instruction

5 GHz

instructionsA = 30 seconds⋅5⋅109 cycles / second
3.0 cycles / instruction

instructionsA = 50⋅109 instructions

HW 5.2 Execution Time

Computer B has a 2 GHz clock. It executes P with the same number of
instructions as computer A (50∙109 instructions) with an average CPI 1.0.
How long does it take to execute P?

TB =
instructionsB⋅CPIB

clockRateB

TB = 50⋅109 instructions⋅1.0 cycles / instruction
2 GHz

TB = 50⋅109 instructions⋅1 cycles / instruction

2⋅109 cycles / second
TB = 25 seconds

HW 5.3 Relative Performance

Compare the performance of computer B and computer A on program P.
Which is faster? by how much?

B is 1.2 times faster than A.

PB

PA

=
TA

TB

= 30 seconds
25 seconds

= 1.2

HW 5.4 Execution Time

A new compiler for computer A compiles program P so that it executes
only half as many instructions. Unfortunately, the CPI for computer A on
these instructions is 4.0. How long does it take to execute the newly
compiled program ?

T A ' =
instructionsA'⋅CPIA '

clockRateA'

T A ' =

1
2
⋅# instructionsA⋅4.0⋅cycles / instruction

clockRateA

T A ' = 0.5⋅50⋅109 instructions⋅4.0⋅cycles / instruction

5⋅109 cycles / second

T A ' = 100
5

seconds = 20 seconds

HW 5.5 Relative Performance

Compare the performance of computer B (with the old compiler) to
computer A' (A with the new compiler) on program P. Which is faster?
by how much?

A' is 1.25 times faster than B.

A' is 1.5 times faster than A.

PA'

PB

=
TB

TA'

= 25 seconds
20 seconds

= 1.25

PA'

PA

=
TA

TA'

= 30 seconds
20 seconds

= 1.5

Averages and Weighted Averages

total weight: W ≡∑
i=1

N

w i normalized weight: qi ≡
wi

W
 (∑

i= 0

N

qi=1)

average: v⃗ ≡
∑
i=1

N

v i

N

weighted average:
∑
i=1

N

wi vi

∑
i=1

N

w i

=
∑
i=1

N

wi v i

W
= ∑

i=1

N wi

W
v i = ∑

i=1

N

qi v i

Given values: {v1 , v2 , … vN } & weights: {w1 , w2 , … wN }

Typical Instruction Statistics

Instruction types, frequencies, and execution times

50% ALU instructions 5 CPI

30% Memory instructions

20% Load 8 CPI

10% Store 6 CPI

20% Branch instructions 10 CPI

0.5% Special instructions

Average Cycles Per Instruction

(Weighted) average CPI
= q

ALU
T

ALU
 + q

Load
T

Load
 + q

Store
T

Store
 + q

Branch
T

Branch

= 0.5•5 + 0.2•8 + 0.1•6 + 0.2•10

= 2.5 + 1.6 + 0.6 + 2.0

= 6.7 cycles approximation: 20 / 6.7 ≈ 3

Execution time fraction by instruction type

ALU 2.5 / 6.7 ~ 37.5%

Load 1.6 / 6.7 ~ 24.0%

Store 0.6 / 6.7 ~ 9.0%

Branch 2.0 / 6.7 ~ 30.0%

CPU Time Equation

instruction time = # seconds
instruction

= # cycles
instruction

⋅# seconds
cycle

T CPU (execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

20 seconds ≈ # instructions⋅6.7⋅10−9 seconds

If T CPU (execution) ≈ 20 seconds, cycle time = 10−9 seconds

instructions ≈ 20

6.7⋅10−9 ≈ 3⋅109

Performance Equations

Performance – inverse of execution time

CPU time equation

Amdahl's law

performance: Px ≡ 1
Tx

relative performance:
Px

P y

=
T y

Tx

TCPU (execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

Tnew =
fraction affected⋅Told

improvement
+ fraction not affected⋅Told

Amdahl's Law

affected (8) unaffected (4)
old time (12)

improved (5) unaffected (4)

new time (9)

SpeedUp (1.6)

T
old

 = affected + unaffected

T
new

 = improved + unaffected

SpeedUp = affected / improved

Overall SpeedUp = P
new

/P
old

 = T
old

/T
new

(fraction affected) F
a
 = affected / T

old

(fraction unaffected) F
a
 = unaffected / T

old

Improving Race Car Performance

Race time = 900/90 + 100/50 = 12 hours

Change #1: 1.11 x improvement in cruising speed

Change #2: 2.00 x improvement in other speed

miles miles/hours

cruising 900 90

other 100 50

Change # 1

Told = 12 hours
fa = 0.90 (fraction affected = affected/total = 900 miles

1000 miles
)

fa = 0.10 (fraction unaffected = unaffected/total = 100 miles
1000 miles)

su = 1.11 (speedup for affected)

Tnew =
fa⋅Told
su

+ fa⋅Told

Tnew = 0.9⋅12
1.11

+ 0.1⋅12 ≈ 9.73 + 1.2 = 10.93 hours

Change # 2

Told = 12 hours
fa = 0.10 (fraction affected = affected/total = 100 miles

1000 miles
)

fa = 0.90 (fraction unaffected = unaffected/total = 900 miles
1000 miles)

su = 2.00 (speedup for affected)

Tnew =
fa⋅Told
su

+ fa⋅Told

Tnew = 0.1⋅12
2

+ 0.9⋅12 ≈ 0.6 + 10.8 = 11.4 hours

Change # 1
wrong!

Told = 12 hours
fa = 0.90 (fraction affected = affected/total = 900 miles

1000 miles
)

fa = 0.10 (fraction unaffected = unaffected/total = 100 miles
1000 miles)

su = 1.11 (speedup for affected)

Tnew =
fa⋅Told
su

+ fa⋅Told

Tnew = 0.9⋅12
1.11

+ 0.1⋅12 ≈ 9.73 + 1.2 = 10.93 hours

Change # 2
wrong!

Told = 12 hours
fa = 0.10 (fraction affected = affected/total = 100 miles

1000 miles
)

fa = 0.90 (fraction unaffected = unaffected/total = 900 miles
1000 miles)

su = 2.00 (speedup for affected)

Tnew =
fa⋅Told
su

+ fa⋅Told

Tnew = 0.1⋅12
2

+ 0.9⋅12 ≈ 0.6 + 10.8 = 11.4 hours

Change # 1
correct

Told = 12 hours
fa = 0.833 (fraction affected = affected/total = 10 hours

12 hours
= 5

6
)

fa = 0.167 (fraction unaffected = unaffected/total = 2 hours
12 hours

= 1
6

)

su = 1.11 (speedup for affected)

Tnew =
fa⋅Told
su

+ fa⋅Told

Tnew ≈ 0.833⋅12
1.11

+ 0.167⋅12 ≈ 9 + 2 = 11 hours

Change # 2
correct

Told = 12 hours
fa = 0.167 (fraction affected = affected/total = 2 hours

12 hours
= 1

6
)

fa = 0.833 (fraction unaffected = unaffected/total = 10 hours
12 hours

= 5
6

)

su = 2.000 (speedup for affected)

Tnew =
fa⋅Told
su

+ fa⋅Told

Tnew ≈ 0.167⋅12
2

+ 0.833⋅12 ≈ 1. + 10 = 11 hours

Average Cycles Per Instruction

(Weighted) average CPI
= q

ALU
T

ALU
 + q

Load
T

Load
 + q

Store
T

Store
 + q

Branch
T

Branch

= 0.5•5 + 0.2•8 + 0.1•6 + 0.2•10

= 2.5 + 1.6 + 0.6 + 2.0

= 6.7 cycles approximation: 20 / 6.7 ≈ 3

Execution time fraction by instruction type

ALU 2.5 / 6.7 ~ 37.5%

Load 1.6 / 6.7 ~ 24.0%

Store 0.6 / 6.7 ~ 9.0%

Branch 2.0 / 6.7 ~ 30.0%

CPU Time Equation

instruction time = # seconds
instruction

= # cycles
instruction

⋅# seconds
cycle

T CPU (execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

20 seconds ≈ # instructions⋅6.7⋅10−9 seconds

If T CPU (execution) ≈ 20 seconds, cycle time = 10−9 seconds

instructions ≈ 20

6.7⋅10−9 ≈ 3⋅109

Amdahl's Law 1

Improvement X
 reduces ALU instruction CPI from 5 to 4

T X = fraction affected⋅20 sec
improvement

+ fraction not affected⋅20 sec

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Amdahl's Law 1 (wrong!)

Improvement X
 reduces ALU instruction CPI from 5 to 4

T X = 0.5⋅20
5
4

+ 0.5⋅20 sec = 8 +10 sec = 18 sec

T X = fraction affected⋅20 sec
improvement

+ fraction not affected⋅20 sec

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Amdahl's Law 1

Improvement X
 reduces ALU instruction CPI from 5 to 4

T X = (
2.5
6.7

20

5
4

+ 4.2
6.7

20) sec ≈ (7.5
1.25

+ 12.6) sec = 18.6 sec

T X = fraction affected⋅20 sec
improvement

+ fraction not affected⋅20 sec

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Amdahl's Law 2

Improvement Y
 reduces Load instruction CPI from 8 to 4

T Y = (
1.6
6.7

20

8
4

+ 5.1
6.7

20) sec ≈ (4.8
2

+ 15.3) sec = 17.7 sec

T Y = fraction affected⋅20 sec
improvement

+ fraction not affected ⋅20 sec

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Amdahl's Law 3

Improvement Z
 reduces Store instruction CPI from 6 to 2

T Z = (
0.6
6.7

20

6
2

+ 6.1
6.7

20) sec ≈ (1.8
3

+ 18.3) sec = 18.9 sec

T Z = fraction affected⋅20 sec
improvement

+ fraction not affected ⋅20 sec

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Amdahl's Law 4

Improvement W
 reduces Branch instruction CPI from 10 to 5

TW = (
2.0
6.7

20

10
5

+ 4.7
6.7

20) sec ≈ (6
2

+ 14.1)sec = 17.1 sec

TW = fraction affected⋅20 sec
improvement

+ fraction not affected ⋅20 sec

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Amdahl's Law

affected (8) unaffected (4)
old time (12)

improved (5) unaffected (4)

new time (9)

SpeedUp (1.6)

T
old

 = affected + unaffected

T
new

 = improved + unaffected

SpeedUp = affected / improved

Overall SpeedUp = P
new

/P
old

 = T
old

/T
new

(fraction affected) F
a
 = affected / T

old

(fraction unaffected) F
a
 = unaffected / T

old

Amdahl's Law Overall SpeedUp

performance: P x ≡
1
T x

relative performance:
P x

P y

=
T y

T x

P X

Pold

=
T old

T X

= 20
18.6

≈ 1.075

PY

Pold

=
T old

T Y

= 20
17.7

≈ 1.130

PZ

Pold

=
T old

T Z

= 20
18.9

≈ 1.058

PW

Pold

=
T old

TW

= 20
17.1

≈ 1.170

Amdahl's Law Overall SpeedUp

Pnew
Pold

=
Told
Tnew

Pnew
Pold

=
Told

fa⋅Told
su

+ fa⋅Told

Pnew
Pold

= 1
fa
su

+ fa

Human Addition (Binary)

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

64-Bit Computer Addition

a
0

a
63

b
0

b
63

s
0

s
63

C

64-bit adder
.
.
.

.

.

.

4-Bit Computer Addition

a
0

a
1

a
2

a
3

b
0

b
1

b
2

b
3

s
0

s
1

s
2

s
3

c

half adder
half adder1-bit adder

half adder

half adder
1-bit adder

half adder

1-bit adder

half adder

half adder

1-bit adder

4-bit adder

4-Bit Ripple Carry Adder

a
0

a
1

a
2

a
3

b
0

b
1

b
2

b
3

s
0

s
1

s
2

s
3

c

half adder
half adder1-bit adder

half adder

half adder
1-bit adder

half adder

1-bit adder

half adder

half adder

1-bit adder

4-bit adder

4-Bit Ripple Carry Adder

a
0

a
1

a
2

a
3

b
0

b
1

b
2

b
3

s
0

s
1

s
2

s
3

c

half adder
half adder1-bit adder

half adder

half adder
1-bit adder

half adder

1-bit adder

half adder

half adder

1-bit adder

4-Bit Ripple Carry Adder

a
0

a
1

a
2

a
3

b
0

b
1

b
2

b
3

s
0

s
1

s
2

s
3

c

half adder
half adderhalf adder

half adder

half adder
full adder

half adder

full adder

half adder

half adder

full adder

a

b

s

c

1-Bit Computer Addition (take 1)

half adder

Half Adder Truth Table

a b c s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

c = ab
s = ab + ab

a

b
s

c

 half adder

Half Adder Circuit

1-Bit Computer Addition (take 2)

a

b
s

i

c'

c

half adder

half adder

full adder

Full Adder

a b c c' s
0 0 0 0 0 0
1 0 0 1 0 1
2 0 1 0 0 1
3 0 1 1 1 0
4 1 0 0 0 1
5 1 0 1 1 0
6 1 1 0 1 0
7 1 1 1 1 1

s' = abc + abc + abc +
s' = abc

c' = abc + abc + abc +
c' = abc + abc + abc

c' = abc + abc + abc +
c' = abc + abc + abc

c' = bc + ac + ab

Full Adder

a b c c' s
0 0 0 0 0 0
1 0 0 1 0 1
2 0 1 0 0 1
3 0 1 1 1 0
4 1 0 0 0 1
5 1 0 1 1 0
6 1 1 0 1 0
7 1 1 1 1 1

s' = abc + abc + abc +
s' = abc

c' = abc + abc + abc +
c' = abc + abc + abc

c' = abc + abc + abc +
c' = abc + abc + abc

c' = bc + ac + ab

Full Adder

s' = abc + abc + abc +
s' = abc

c' = abc + abc + abc +
c' = abc + abc + abc

c' = abc + abc + abc +
c' = abc + abc + abc

c' = bc + ac + ab

a b c c' s
0 0 0 0 0 0
1 0 0 1 0 1
2 0 1 0 0 1
3 0 1 1 1 0
4 1 0 0 0 1
5 1 0 1 1 0
6 1 1 0 1 0
7 1 1 1 1 1

Full Adder

a b c c' s
0 0 0 0 0 0
1 0 0 1 0 1
2 0 1 0 0 1
3 0 1 1 1 0
4 1 0 0 0 1
5 1 0 1 1 0
6 1 1 0 1 0
7 1 1 1 1 1

s' = abc + abc + abc +
s' = abc

c' = abc + abc + abc +
c' = abc + abc + abc

c' = abc + abc + abc +
c' = abc + abc + abc

c' = bc + ac + ab

a

r
b

c'

c

s' = abc + abc + abc + abc
c' = ab + ac + bc

 full adder

a

r
b

c'

c

s' = abc + abc + abc + abc
c' = ab + ac + bc

full adder

Full Adder ??

full adder

a

b
s

c'

c

half adder

half adder

Full Adder ??

full adder

a

b
s

c'

c

x

y

z

half adder

half adder

Full Adder Implementation ??

a b c x y z c' s
0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1
2 0 1 0 1 0 0 0 1
3 0 1 1 1 0 1 1 0
4 1 0 0 1 0 0 0 1
5 1 0 1 1 0 1 1 0
6 1 1 0 0 1 0 1 0
7 1 1 1 0 1 0 1 1

full adder

a

b
s

c'

c

x

y

z

half adder

half adder

u v c s

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

c = uv
s = uv + uv

Full Adder Implementation!

a b c x y z c' s
0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1
2 0 1 0 1 0 0 0 1
3 0 1 1 1 0 1 1 0
4 1 0 0 1 0 0 0 1
5 1 0 1 1 0 1 1 0
6 1 1 0 0 1 0 1 0
7 1 1 1 0 1 0 1 1

full adder

a

b
s

c'

c

x

y

z

half adder

half adder

u v c s

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

c = uv
s = uv + uv

A Full Adder

a

b

s
i

c'

c

half adder

half adder

 Full Adder

A Full Adder

a

b

s
i

c'

c

half adder

half adder

 Full Adder

Initial adder — half or full?

a
0

a
1

a
2

a
3

b
0

b
1

b
2

b
3

s
0

s
1

s
2

s
3

c

half adder
half adderhalf adder ?

half adder

half adder
full adder

half adder

full adder

half adder

half adder

full adder

Full Initial adder?

Con
Superfluous wires and gates

Pro
General simplicity

Avoid special cases where ever practical

Simplifies addition of big integers
Big Integer: N = x

k
∙Jk + ... + x

2
∙J2 + x

1
∙J1 + x

0
∙J0

Where J ≡ 232
 Like base 10 – but with sixteen billion billion fingers

Simplifies subtraction

4-Bit Ripple Carry Adder

a
0

a
1

a
2

a
3

b
0

b
1

b
2

b
3

s
0

s
1

s
2

s
3

c
3

c
-1

half adder
half adderfull adder

half adder

half adder
full adder

half adder

full adder

half adder

half adder

full adder

4-Bit Ripple Carry Adder

a
0

a
1

a
2

a
3

b
0

b
1

b
2

b
3

s
0

s
1

s
2

s
3

c
3

c
-1

half adder
half adderfull adder

half adder

half adder
full adder

half adder

full adder

half adder

half adder

full adder

4-bit adder

4-Bit Ripple Carry Adder

a
0

a
1

a
2

a
3

b
0

b
1

b
2

b
3

s
0

s
1

s
2

s
3

c
3

c
-1

half adder
half adderfull adder

half adder

half adder
full adder

half adder

full adder

half adder

half adder

full adder

4-bit adder

8-Bit Ripple Carry Adder

a
0

a
1

a
2

a
3

b
0

b
1

b
2

b
3

s
0

s
1

s
2

s
3

c
3

c
-1

half adder
half adderfull adder

half adder
half adderfull adder

half adderfull adder

half adder
half adderfull adder

4-bit adder

a
4

a
5

a
6

a
7

b
4

b
5

b
6

s
4

s
5

s
6

s
7

c
7

half adder
half adderfull adder

half adder
half adderfull adder

half adderfull adder

half adder
half adderfull adder

4-bit adder

b
7

 8-bit adder

64-Bit Ripple Carry Adder

a
0

a
63

b
0

b
63

s
0

s
63

c
63

c
-1

64-bit adder
.
.
.

.

.

.

Fixed Width Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Fixed Width Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Fixed Width Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Fixed Width Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Fixed Width Binary Addition

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0

0
0

0

Fixed Width Binary Addition

Carry out

1 1 0 1 1 1
1 0 0 0 0 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
+

0
0
0

0

0

Fixed Width Binary Addition

Carry out 0 1Carry in

Non-Negative Numbers Subtraction

A ≥ B

A ~ B ≡ A – B (ordinary arithmetic)

A < B
1) B ~ B = 0

2) (A ~ B) + C = (A + C) ~ B
~B ≡ 0 ~ B = 2n – B = B + 1 ~B pseudoinverse of B

A ~ B ≡ A + B + 1

1 1 0 1 1 1
1 0 0 1 1 1

1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 01

1
–

0
0
1

0

0

Fixed Width Binary Addition

Borrow 0 1Carry in

Negative Number Representation

Alternatives

1. Sign-magnitude

How would it help

2. Bias

Complicates arithmetic

3. 1's complement

Too many zeros

4. 2's complement

Negative Number Representation

Unsigned numbers: 0 .. 2N - 1

Signed number alternatives

1. Sign-magnitude: –2N-1–1 .. 2N-1–1
How would this help?

2. Bias: –bias .. 2N–1 – bias
Complicates arithmetic

(a-bias + b-bias) = (a + b)-bias)-bias

3. 1's complement: –2N-1–1 .. 2N-1–1
+0 and -0

4. 2's complement: –2N-1 .. 2N-1–1

Negative Number Representation
binary sign magnitude bias (8) 1's complement 2's complement

0 0000 + 0 -8 0 0

1 0001 + 1 -7 1 1

2 0010 + 2 -6 2 2

3 0011 + 3 -5 3 3

4 0100 + 4 -4 4 4

5 0101 + 5 -3 5 5

6 0110 + 6 -2 6 6

7 0111 + 7 -1 7 7

8 1000 - 0 0 -7 -8

9 1001 - 1 1 -6 -7

A 1010 - 2 2 -5 -6

B 1011 - 3 3 -4 -5

C 1100 - 4 4 -3 -4

D 1101 - 5 5 -2 -3

E 1110 - 6 6 -1 -2

F 1111 - 7 7 -0 -1

10's Complement Arithmetic

The 9's complement, d, of a decimal digit d is 9 – d
The 9's complement, X, of a 4-digit X is 9999 – X

The 10's complement, X, of X is X + 1
X = X + 1 = 9999 – X +1 = 10000 – X

convention: X is positive and Y is negative iff
0 ≤ X < 5000 ≤ Y < 10000

–Y ≡ Y and X – Y = X + Y unless

Overflow — sign(X) = sign(Y) ≠ sign(X + Y)
Overflow — sign(X) ≠ sign(Y) = sign(X – Y)

10's Complement Example

1000 = 8999

1000 = 8999 + 1 = 9000

3000 + 1000 = 12000 ≈ 2000 = 3000 – 1000

-200 ≈ 10000 – 200 = 9799 + 1 = 200 + 1 = 200

-300 ≈ 10000 – 300 = 9699 + 1 = 300 + 1 = 300

100 + 300 = 9800 = 200 ≈ 100 – 300

overflow
4000 + 2000 = 6000 = 5999 + 1 = 4001 + 1 ≠ -4001

2's Complement Arithmetic

The 1's complement, b, of a binary bit b is 1 – d
The 1's complement, X, of a 4-bit X is 1111 – X

The 2's complement, X, of X is X + 1
X = X + 1 = 1111 – X +1 = 10000 – X

convention: X is positive and Y is negative iff
0 ≤ X < 2N-1 ≤ Y < 2N

–Y ≡ Y and X – Y = X + Y unless

Overflow — sign(X) = sign(Y) ≠ sign(X + Y)
Overflow — sign(X) ≠ sign(Y) = sign(X – Y)

. . . 0100000000 = 2N

. . . 0011111111 = 2N – 1

. . . 0010000000 = 2N-1

. . . 0001111111 = 2N-1 – 1

. . . 0000000101

. . . 0000000100 = 4 = 22

. . . 0000000011 = 3 = 22 – 1

. . . 0000000010 = 2 = 21

. . . 0000000001 = 1 = 20 = 21 – 1

. . . 0000000000 = 0 = 20 – 1

. . . 1111111111 = –1 = –20

. . . 1111111110 = –2 = –21 = 20 – 1

. . . 1111111101 = –3 = –21 – 1

. . . 1111111100 = –4 = –22

. . . 1111111011 = –5 = –22 – 1

. . . 1110000000 = –2N-1

. . . 1101111111 = –2N-1 – 1

. . . 1100000000 = –2N

. . . 1011111111 = –2N – 1

N–Bit Integers
(N = 8)

U
n

si
g

n
ed

 In
te

g
er

s

S
ig

n
e d

 In
te

g
er

s

Negative Number Representation
binary sign magnitude bias (-7) 1's complement 2's complement

0 0000 + 0 -7 0 0

1 0001 + 1 -6 1 1

2 0010 + 2 -5 2 2

3 0011 + 3 -4 3 3

4 0100 + 4 -3 4 4

5 0101 + 5 - 2 5 5

6 0110 + 6 - 1 6 6

7 0111 + 7 - 0 7 7

8 1000 - 0 1 -7 -8

9 1001 - 1 2 -6 -7

A 1010 - 2 3 -5 -6

B 1011 - 3 4 -4 -5

C 1100 - 4 5 -3 -4

D 1101 - 5 6 -2 -3

E 1110 - 6 7 -1 -2

F 1111 - 7 8 -0 -1

Basic Processor Model

A
bus

B
bus

 ALU

C
Bus

B
MUX

A
MUX

 C
 MUX

SYSTEM BUS

registers

PC IR

Basic Processor Model

A
bus

B
bus

 ALU

C
Bus

B
MUX

A
MUX

 C
 MUX

SYSTEM BUS

registers

PC IR

Combinational Core

Arithmetic / Logical Unit

Building Blocks
AND, OR, and NOT gates
Inverters, Decoders, Multiplexers

Inputs (operands): A and B buses

Output (result): C bus
Logical

Bitwise: A, A & B, A | B, A ^ B, A ↑ B, A ↓ B, ...

Arithmetic
A + B, A – B, A ٠ B, A div B, A mod B

Comparison
A < B, A = B, A ≥ B, etc. and X < 0, X = 0, X ≥ 0, etc.

TINY Arithmetic / Logical Unit

Building Blocks
AND, OR, and NOT gates
Inverters, Decoders, Multiplexers

Inputs (operands): A and B buses

Output (result): C bus
Logical

Bitwise: A, A & B, A | B, A ^ B, A ↑ B, A ↓ B, ...

Arithmetic
A + B, A – B, A ٠ B, A div B, A mod B

Comparison
A < B, A = B, A ≥ B, etc. and X < 0, X = 0, X ≥ 0, etc.

Muxes, Buses, and ALU

ALU inputs (operands): A and B buses

ALU output (result): C bus
Logical

Bitwise: A, A & B, A | B, A ^ B, A ↑ B, A ↓ B, ...

Arithmetic
A + B, A – B, A ٠ B, A div B, A mod B

Comparison
A < B, A = B, A ≥ B, etc. and X < 0, X = 0, X ≥ 0, etc.

Combinational building blocks
AND, OR, and NOT gates

Inverters, Decoders, Multiplexers

Inverters, Decoders, Multiplexer

Inverter: select data input or its negation
1 data input
1 selector input
1 output

Decoder: select unique output to be 1 (true)
N selector inputs
2N outputs

Multiplexer: select unique data input to be output
2N data inputs
N selector inputs
1 output

The TINY Computer

A
bus

B
bus

 ALU

C
Bus

B
MUX

A
MUX

 C
 MUX

SYSTEM BUS

MAR
0x0000
0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0xffff

MDR

Z
N
C
O

registers
00000000

$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
$E
$F

PC IR

The TINY Computer

A
bus

B
bus

 ALU

C
Bus

B
MUX

A
MUX

 C
 MUX

SYSTEM BUS

MAR
0x0000
0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0xffff

MDR

Z
N
C
O

registers
00000000

$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
$E
$F

PC IR

