CMP 334: Seventh Class

Performance

HW 5 solution

Averages and weighted averages (review) Amdahl's law

Ripple-carry adder circuits

Binary addition

Half-adder circuits

Full-adder circuits

Subtraction, negative numbers, signed arithmetic A - B = A + -B

For next class: HW 6; read A.3-4, 2.1-5, 3.1-2

HW 5: Performance Problems

1) Computer A has a 5 GHz clock and executes program P in 30 seconds with an average CPI (cycles per instruction) of 3.0. How many instructions does it execute for program P?

2) Computer B has a 2 GHz clock. It executes P with the same number of instructions as computer A with an average CPI 1.0. How long does it take to execute P?

3) Compare the performance of computer B and computer A on programP. Which is faster? by how much?

4) A new compiler for computer A compiles program P so that it executes only half as many instructions. Unfortunately, the CPI for computer A on these instructions is 4.0. How long does it take to execute the newly compiled program ?

5) Compare the performance of computer B (with the old compiler) to computer A (with the new compiler) on program P. Which is faster? by how much?

Performance Equations

Performance – inverse of execution time

performance: $P_x \equiv \frac{1}{T_x}$ *relative performance:* $\frac{P_x}{P_y} = \frac{T_y}{T_x}$

CPU time equation

 $T_{CPU}(\text{execution}) = \frac{\# \text{instructions}}{\text{execution}} \cdot \frac{\# \text{cycles}}{\text{instruction}} \cdot \frac{\# \text{seconds}}{\text{cycle}}$

Amdahl's law

$$T_{new} = \frac{\text{fraction affected} \cdot T_{old}}{\text{improvement}} + \text{fraction not affected} \cdot T_{old}$$

Processor Performance Equations

 $T_X = \# instructions_X \cdot CPI_X \cdot cycleTime_X$

$$T_X = \frac{\# \text{ instructions}_X \cdot \text{CPI}_X}{\text{clockRate}_X}$$

\mathbf{P}_{X}	T_{Y}	# instructions _{<i>Y</i>} · CPI _{<i>Y</i>} · cycleTime _{<i>Y</i>}
\mathbf{P}_{Y}	T_X	# instructions _{<i>X</i>} · CPI _{<i>X</i>} · cycleTime _{<i>X</i>}

\mathbf{P}_X	T_{Y}	# instructions _{<i>Y</i>} · CPI _{<i>Y</i>} · clockRate _{<i>X</i>}
$\mathbf{P}_{\mathbf{Y}}$	$\overline{\mathbf{T}_X}$	# instructions _{<i>X</i>} · CPI _{<i>X</i>} · clockRate _{<i>Y</i>}

HW 5.1 Instruction Count

Computer A has a 5 GHz clock and executes program P in 30 seconds with an average CPI (cycles per instruction) of 3.0. How many instructions does it execute for program P?

 $\mathbf{T}_{A} = \frac{\# \text{instructions}_{A} \cdot \text{CPI}_{A}}{\text{clockRate}_{A}}$ $30 \text{ seconds} = \frac{\# \text{instructions}_{A} \cdot 3.0 \text{ cycles / instruction}}{5 \text{ GHz}}$ $\# \text{instructions}_{A} = \frac{30 \text{ seconds} \cdot 5 \cdot 10^{9} \text{ cycles / second}}{3.0 \text{ cycles / instruction}}$ $= 50 \cdot 10^{9} \text{ instructions}$

HW 5.2 Execution Time

Computer **B** has a 2 GHz clock. It executes P with the same number of instructions as computer **A** ($50 \cdot 10^9$ *instructions*) with an average CPI 1.0. How long does it take to execute P?

$$\mathbf{T}_{B} = \frac{\# \text{instructions}_{B} \cdot \text{CPI}_{B}}{\text{clockRate}_{B}}$$

$$= \frac{50 \cdot 10^{9} \text{ instructions} \cdot 1.0 \text{ cycles / instruction}}{2 \text{ GHz}}$$

$$= \frac{50 \cdot 10^{9} \text{ instructions} \cdot 1 \text{ cycles / instruction}}{2 \cdot 10^{9} \text{ cycles / second}}$$

$$= 25 \text{ seconds}$$

HW 5.3 Relative Performance

Compare the performance of computer **B** and computer **A** on program P. Which is faster? by how much?

$$\frac{\mathbf{P}_{B}}{\mathbf{P}_{A}} = \frac{\mathbf{T}_{A}}{\mathbf{T}_{B}} = \frac{30 \text{ seconds}}{25 \text{ seconds}} = 1.2$$

B is 1.2 times faster than **A**.

HW 5.4 Execution Time

A new compiler for computer **A** compiles program P so that it executes only half as many instructions. Unfortunately, the CPI for computer **A** on *these* instructions is 4.0. How long does it take to execute the newly compiled program ?

 $T_{A'} = \frac{\# \text{instructions}_{A'} \cdot \text{CPI}_{A'}}{\text{clockRate}_{A'}}$ $\frac{1}{2} \cdot \#$ instructions_A · 4.0 · cycles / instruction clockRate₄ $\frac{0.5 \cdot 50 \cdot 10^9}{5 \cdot 10^9} \frac{instructions}{cycles} \cdot 4.0 \cdot \frac{cycles}{instruction}$ $=\frac{100}{5}$ seconds = 20 seconds

HW 5.5 Relative Performance

Compare the performance of computer **B** (with the old compiler) to computer A' (A with the new compiler) on program P. Which is faster? by how much?

$$\frac{\mathbf{P}_{A'}}{\mathbf{P}_{B}} = \frac{\mathbf{T}_{B}}{\mathbf{T}_{A'}} = \frac{25 \text{ seconds}}{20 \text{ seconds}} = 1.25$$

A' is 1.25 times faster than **B**.

$$\frac{\mathbf{P}_{A'}}{\mathbf{P}_{A}} = \frac{\mathbf{T}_{A}}{\mathbf{T}_{A'}} = \frac{30 \text{ seconds}}{20 \text{ seconds}} = 1.5$$

A' is 1.5 times faster than A.

Averages and Weighted Averages

Given values: $\{v_1, v_2, ..., v_N\}$ & weights: $\{w_1, w_2, ..., w_N\}$

average:
$$\vec{v} \equiv \frac{\sum_{i=1}^{N} v_i}{N}$$

N

total weight: $W \equiv \sum_{i=1}^{N} w_i$ normalized weight: $q_i \equiv \frac{w_i}{W}$ $(\sum_{i=0}^{N} q_i = 1)$

weighted average:

$$\frac{\sum_{i=1}^{N} w_{i} v_{i}}{\sum_{i=1}^{N} w_{i}} = \frac{\sum_{i=1}^{N} w_{i} v_{i}}{W} = \sum_{i=1}^{N} \frac{w_{i}}{W} v_{i} = \sum_{i=1}^{N} q_{i} v_{i}$$

Typical Instruction Statistics

Instruction types, frequencies, and execution times 50% ALU instructions 5 CPI **30%** Memory instructions 20% Load 8 CPI 10% Store 6 CPI 20% Branch instructions 10 CPI 0.5% Special instructions

Average Cycles Per Instruction

(Weighted) average CPI

 $= q_{ALU}T_{ALU} + q_{Load}T_{Load} + q_{store}T_{store} + q_{Branch}T_{Branch}$ $= 0.5 \cdot 5 + 0.2 \cdot 8 + 0.1 \cdot 6 + 0.2 \cdot 10$ = 2.5 + 1.6 + 0.6 + 2.0 $= 6.7 \text{ cycles approximation: } 20 / 6.7 \approx 3$

Execution time fraction by instruction type

ALU	2.5 / 6.7	~ 37.5%
Load	1.6 / 6.7	~ 24.0%
Store	0.6 / 6.7	~ 9.0%
Branch	2.0 / 6.7	~ 30.0%

CPU Time Equation

T (execution) -	# instructions	# cycles	# seconds
$T_{CPU}(\text{execution}) =$	execution	instruction	cycle

If T_{CPU} (execution) ≈ 20 seconds, cycle_{time} = 10^{-9} seconds

20 seconds
$$\approx$$
 # instructions $\cdot 6.7 \cdot 10^{-9}$ seconds
instructions $\approx \frac{20}{6.7 \cdot 10^{-9}} \approx 3 \cdot 10^{9}$

instruction -	# seconds	# cycles	# seconds
mstruction _{time} –	instruction	instruction	cycle

Performance Equations

Performance – inverse of execution time

performance:
$$\mathbf{P}_x \equiv \frac{1}{\mathbf{T}_x}$$
 relative performance: $\frac{\mathbf{P}_x}{\mathbf{P}_y} = \frac{\mathbf{T}_y}{\mathbf{T}_x}$

CPU time equation

 $\mathbf{T}_{CPU}(\text{execution}) = \frac{\# \text{instructions}}{\text{execution}} \cdot \frac{\# \text{cycles}}{\text{instruction}} \cdot \frac{\# \text{seconds}}{\text{cycle}}$

Amdahl's law

$$\mathbf{T}_{new} = \frac{\text{fraction affected} \cdot \mathbf{T}_{old}}{\text{improvement}} + \text{fraction not affected} \cdot \mathbf{T}_{old}$$

Improving Race Car Performance

	miles	miles/hours
cruising	900	90
other	100	50

Race time = 900/90 + 100/50 = 12 hours Change #1: 1.11 x improvement in cruising speed Change #2: 2.00 x improvement in other speed

Change # 1

Change # 2

Change # 1 wrong!

Change # 2 wrong!

Change # 1 correct

Change # 2 correct

Average Cycles Per Instruction

(Weighted) average CPI

 $= q_{ALU}T_{ALU} + q_{Load}T_{Load} + q_{store}T_{store} + q_{Branch}T_{Branch}$ $= 0.5 \cdot 5 + 0.2 \cdot 8 + 0.1 \cdot 6 + 0.2 \cdot 10$ = 2.5 + 1.6 + 0.6 + 2.0 $= 6.7 \text{ cycles approximation: } 20 / 6.7 \approx 3$

Execution time fraction by instruction type

ALU	2.5 / 6.7	~ 37.5%
Load	1.6 / 6.7	~ 24.0%
Store	0.6 / 6.7	~ 9.0%
Branch	2.0 / 6.7	~ 30.0%

CPU Time Equation

T (execution) -	# instructions	# cycles	# seconds
$T_{CPU}(\text{execution}) =$	execution	instruction	cycle

If T_{CPU} (execution) ≈ 20 seconds, cycle_{time} = 10^{-9} seconds

20 seconds
$$\approx$$
 # instructions $\cdot 6.7 \cdot 10^{-9}$ seconds
instructions $\approx \frac{20}{6.7 \cdot 10^{-9}} \approx 3 \cdot 10^{9}$

instruction -	# seconds	# cycles	# seconds
mstruction _{time} –	instruction	instruction	cycle

Improvement X reduces ALU instruction CPI from 5 to 4 $T_{X} = \frac{\text{fraction affected} \cdot 20 \text{ sec}}{\text{improvement}} + \text{fraction not affected} \cdot 20 \text{ sec}$

Amdahl's Law 1 (wrong!)

Improvement X reduces ALU instruction CPI from 5 to 4 $T_{X} = \frac{\text{fraction affected} \cdot 20 \text{ sec}}{\text{improvement}} + \text{fraction not affected} \cdot 20 \text{ sec}$

$$= \frac{0.5 \cdot 20}{\frac{5}{4}} + 0.5 \cdot 20 \ sec = 8 + 10 \ sec = 18 \ sec$$

Improvement X reduces ALU instruction CPI from 5 to 4

 $T_X = \frac{\text{fraction affected} \cdot 20 \text{ sec}}{\text{improvement}} + \text{fraction not affected} \cdot 20 \text{ sec}$

$$= \left| \frac{\frac{2.5}{6.7} 20}{\frac{5}{4}} + \frac{4.2}{6.7} 20 \right| \sec \approx \left(\frac{7.5}{1.25} + 12.6 \right) \sec = 18.6 \sec$$

Improvement Y reduces Load instruction CPI from 8 to 4 $T_{Y} = \frac{\text{fraction affected} \cdot 20 \text{ sec}}{\text{improvement}} + \text{fraction not affected} \cdot 20 \text{ sec}$ $= \left| \frac{\frac{1.6}{6.7} 20}{\frac{8}{4}} + \frac{5.1}{6.7} 20 \right| \sec \approx \left(\frac{4.8}{2} + 15.3 \right) \sec = 17.7 \ \sec$

Improvement Z reduces Store instruction CPI from 6 to 2 $T_{Z} = \frac{\text{fraction affected} \cdot 20 \text{ sec}}{\text{improvement}} + \text{fraction not affected} \cdot 20 \text{ sec}$ $= \left| \frac{\frac{0.0}{6.7} 20}{\frac{6}{2}} + \frac{6.1}{6.7} 20 \right| \sec \approx \left(\frac{1.8}{3} + 18.3 \right) \sec = 18.9 \sec$

Improvement Wreduces Branch instruction CPI from 10 to 5 $T_W = \frac{\text{fraction affected} \cdot 20 \text{ sec}}{\text{improvement}} + \text{fraction not affected} \cdot 20 \text{ sec}$ $= \left(\frac{\frac{2.0}{6.7}}{\frac{10}{5}} + \frac{4.7}{6.7}}{20}\right) \sec \approx \left(\frac{6}{2} + 14.1\right) \sec = 17.1 \sec$

Amdahl's Law Overall SpeedUp

performance: $P_x \equiv \frac{1}{T_x}$	relative performance:	$\frac{P_x}{P_y} = \frac{T_y}{T_x}$
$\frac{P_X}{P_{old}} = \frac{T_{old}}{T_X}$	$=\frac{20}{18.6}\approx 1.075$	
$\frac{P_Y}{P_{old}} = \frac{T_{old}}{T_Y}$	$=\frac{20}{17.7}\approx 1.130$	
$\frac{P_Z}{P_{old}} = \frac{T_{old}}{T_Z}$	$=\frac{20}{18.9}\approx 1.058$	
$\frac{P_W}{P_{old}} = \frac{T_{old}}{T_W}$	$=\frac{20}{17.1}\approx 1.170$	

Amdahl's Law Overall SpeedUp

Human Addition (Binary) 1 1 0 1 1 1 0 + 1 0 0 0 0 1 0

Binary Addition

Binary Addition

0 0

0 0 0

0 0 0 0

1 0 0 0 0

1 1 0 0 0 0

1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0

1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

64-Bit Computer Addition

4-Bit Computer Addition

1-Bit Computer Addition (take 1)

Half Adder Truth Table

a	b	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

c = abs = ab + ab

Half Adder Circuit

1-Bit Computer Addition (take 2) C a full adder b

#	a b c	C'	S	$s = \overline{abc} + \overline{abc}$
0	000	0	0	abc
1	001	0	1	$c' = \frac{-}{2}bc + \frac{-}{2}bc +$
2	010	0	1	
3	011	1	0	adc
4	100	0	1	
5	101	1	0	
6	110	1	0	
7	111	1	1	

#	a b c	C'	S	$s = \overline{abc} + \overline{abc}$
0	000	0	0	abc
1	001	0	1	$c' = \frac{-}{2}bc + \frac{-}{2}bc +$
2	010	0	1	
3	011	1	0	adc
4	100	0	1	
5	101	1	0	
6	110	1	0	
7	111	1	1	

#	a b c	C'	S	$s = \overline{abc} + \overline{abc}$
0	000	0	0	abc
1	001	0	1	$c' = \frac{-}{2}bc + \frac{-}{2}bc +$
2	010	0	1	
3	011	1	0	add
4	10 0	0	1	$= \overline{abc} + \overline{abc} +$
5	101	1	0	abc + abc + abc
6	110	1	0	
7	111	1	1	

#	a b c	C'	S	$s = \overline{abc} + \overline{abc}$
0	000	0	0	abc
1	001	0	1	$c' = \frac{-}{2}bc + \frac{-}{2}bc +$
2	010	0	1	
3	011	1	0	abc
4	10 0	0	1	$c' = \overline{abc} + abc$
5	101	1	0	abc + abc + abc
6	110	1	0	
7	111	1	1	c' = bc + ac + ab

$s = abc + \overline{abc} + \overline{abc} + \overline{abc}$ c' = ab + ac + bc

Full Adder Implementation ??

#	a b c	X	У	Ζ	C'	S	
0	000				0	0	
1	001				0	1	
2	010				0	1	
3	011				1	0	
4	10 0				0	1	
5	101				1	0	
6	110				1	0	
7	111				1	1	

Full Adder Implementation!

#	a b c	X	У	Ζ	C'	S	
0	000	0	0	0	0	0	
1	001	0	0	0	0	1	
2	010	1	0	0	0	1	
3	011	1	0	1	1	0	
4	10 0	1	0	0	0	1	
5	101	1	0	1	1	0	
6	110	0	1	0	1	0	
7	111	0	1	0	1	1	

Initial adder — half or full?

Full Initial adder?

Con

Superfluous wires and gates

Pro

General simplicity

Avoid special cases where ever practical Simplifies addition of big integers Big Integer: $N = x_k \cdot J^k + ... + x_2 \cdot J^2 + x_1 \cdot J^1 + x_0 \cdot J^0$ Where $J \equiv 2^{32}$ Like base 10 – but with sixteen billion billion fingers

Simplifies subtraction

Non-Negative Numbers Subtraction

$A \geq B$

 $\mathbf{A} \sim \mathbf{B} \equiv \mathbf{A} - \mathbf{B}$ (ordinary arithmetic)

A < B

1)
$$B \sim B = 0$$

2)
$$(A \sim B) + C = (A + C) \sim B$$

 $\sim B \equiv 0 \sim B = 2^n - B = \overline{B} + 1 \sim B$ pseudoinverse of B

$$A \sim B \equiv A + \overline{B} + 1$$

Fixed Width Binary Addition

Alternatives

- Sign-magnitude
 How would it help
- 2. Bias

Complicates arithmetic

3. 1's complement

Too many zeros

4. 2's complement

Unsigned numbers:

Signed number alternatives

- 1. Sign-magnitude: How would this help?
- 2. Bias:

Complicates arithmetic (a-bias + b-bias) = (a + b)-bias)-bias

- 3. 1's complement: +0 and -0
- 4. 2's complement:

$$-2^{N-1}-1 \dots 2^{N-1}-1$$

$$-2^{N-1}-1 \dots 2^{N-1}-1$$

#	binary	sign magnitude	bias (8)	1's complement	2's complement
0	0000	+ 0	-8	0	0
1	0001	+ 1	-7	1	1
2	0010	+ 2	-6	2	2
3	0011	+ 3	-5	3	3
4	0100	+ 4	-4	4	4
5	0101	+ 5	-3	5	5
6	0110	+ 6	-2	6	6
7	0111	+ 7	-1	7	7
8	1000	- 0	0	-7	-8
9	1001	- 1	1	-6	-7
Α	1010	- 2	2	-5	-6
В	1011	- 3	3	-4	-5
С	1100	- 4	4	-3	-4
D	1101	- 5	5	-2	-3
E	1110	- 6	6	-1	-2
F	1111	- 7	7	-0	-1

10's Complement Arithmetic

The 9's complement, \widetilde{d} , of a decimal digit d is 9 – d The 9's complement, \widetilde{X} , of a 4-digit X is 9999 – X The 10's complement, \widetilde{X} , of X is \widetilde{X} + 1 $\widetilde{X} = \widetilde{X} + 1 = 9999 - X + 1 = 10000 - X$

convention: X is positive and Y is negative iff $0 \le X < 5000 \le Y < 10000$

 $-Y \equiv \widetilde{Y} \text{ and } X - Y = X + \widetilde{Y} \text{ unless}$

Overflow — sign(X) = sign(Y) \neq sign(X + Y) — sign(X) \neq sign(Y) = sign(X - Y)

10's Complement Example

- 1000 = 8999
- 1000 = 8999 + 1 = 9000
- 3000 + 10000 = 12000 ≈ 2000 = 3000 1000
- $-200 \approx 10000 200 = 9799 + 1 = 200 + 1 = 200$ $-300 \approx 10000 - 300 = 9699 + 1 = 300 + 1 = 300$ $100 + 300 = 9800 = 200 \approx 100 - 300$

overflow

4000 + 2000 = 6000 = 5999 + 1 = 4001 + 1 ≠ -4001

2's Complement Arithmetic

The 1's complement, \overline{b} , of a binary bit b is 1 – d The 1's complement, \overline{X} , of a 4-bit X is 1111 – X The 2's complement, \overline{X} , of X is \overline{X} + 1 $\overline{X} = \overline{X} + 1 = 1111 - X + 1 = 10000 - X$

convention: X is positive and Y is negative iff $0 \le X < 2^{N-1} \le Y < 2^N$

 $-Y \equiv \overline{Y}$ and $X - Y = X + \overline{Y}$ unless

Overflow — sign(X) = sign(Y) \neq sign(X + Y) — sign(X) \neq sign(Y) = sign(X - Y)

010000000	= 2 ^N	
0011111111	$= 2^{N} - 1$	N–Bit Integers
	= 2 ^{N-1}	(N = 8)
00011111111	$= 2^{N-1} - 1$	
000000101		
000000100	$= 4 = 2^2$	
000000011	$= 3 = 2^2 - 1$	STO
000000010	$= 2 = 2^{1}$	0 0
000000001	$= 1 = 2^{0} = 2^{1} - $	- 1 - 2
0000000000	$= 0 = 2^{0} - 1$	
1111111111	$= -1 = -2^{0}$	
1111111110	$= -2 = -2^{1} = 2^{0} - 2^{1}$	- 1 5
1111111101	$= -3 = -2^{1} - 1$	S
	$= -4 = -2^{2}$	
	$= -5 = -2^2 - 1$	
111000000	$= -2^{N-1}$	
	$= -2^{N-1} - 1$	
1100000000	= -2 ^N	
	= -2 ^N - 1	
		$\begin{array}{rcl} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$

#	binary	sign magnitude	bias (-7)	1's complement	2's complement
0	0000	+ 0	-7	0	0
1	0001	+ 1	-6	1	1
2	0010	+ 2	-5	2	2
3	0011	+ 3	-4	3	3
4	0100	+ 4	-3	4	4
5	0101	+ 5	- 2	5	5
6	0110	+ 6	- 1	6	6
7	0111	+ 7	- 0	7	7
8	1000	- 0	1	-7	-8
9	1001	- 1	2	-6	-7
Α	1010	- 2	3	-5	-6
В	1011	- 3	4	-4	-5
С	1100	- 4	5	-3	-4
D	1101	- 5	6	-2	-3
E	1110	- 6	7	-1	-2
F	1111	- 7	8	-0	-1

Basic Processor Model

Basic Processor Model

Arithmetic / Logical Unit

Building Blocks

AND, OR, and NOT gates Inverters, Decoders, Multiplexers

- Inputs (operands): A and B buses
- Output (*result*): **C** bus
 - Logical

Bitwise: \overline{A} , A & B, A | B, $A \land B$, $A \uparrow B$, $A \downarrow B$, ...

Arithmetic

A + B, A - B, $A \cdot B$, $A \operatorname{div} B$, $A \operatorname{mod} B$

Comparison

A < B, A = B, $A \ge B$, etc. and X < 0, X = 0, $X \ge 0$, etc.

TINY Arithmetic / Logical Unit

Building Blocks

AND, OR, and NOT gates Inverters, Decoders, Multiplexers

- Inputs (operands): A and B buses
- Output (*result*): C bus
 - Logical

Bitwise: \overline{A} , A & B, A | B, $A \land B$, $A \uparrow B$, $A \downarrow B$, ...

Arithmetic

A + B, A - B, $A \cdot B$, $A \operatorname{div} B$, $A \operatorname{mod} B$

Comparison

A < B, A = B, $A \ge B$, etc. and X < 0, X = 0, $X \ge 0$, etc.

Muxes, Buses, and ALU

ALU inputs (operands): A and B buses

ALU output (*result*): C bus

Logical

Bitwise: \overline{A} , A & B, A | B, $A \land B$, $A \uparrow B$, $A \downarrow B$, ...

Arithmetic

A + B, A - B, $A \cdot B$, $A \operatorname{div} B$, $A \operatorname{mod} B$

Comparison

A < B, A = B, $A \ge B$, etc. and X < 0, X = 0, $X \ge 0$, etc.

Combinational building blocks

AND, OR, and NOT gates

Inverters, Decoders, Multiplexers

Inverters, Decoders, Multiplexer

Inverter: select data input or its negation

- 1 data input
- 1 selector input
- 1 output

Decoder: select unique output to be 1 (true) N selector inputs 2^N outputs

Multiplexer: select unique data input to be output

- 2^N data inputs
- N selector inputs
- 1 output

The **TINY** Computer

The **TINY** Computer

TINY Instruction Set Architecture

Main Memory 65536 16-bit words

 $\texttt{M[n]} - \texttt{n}^{\texttt{th}} \text{ memory address}$

^M[n] - content of M[n]

Register File 16 16-bit "registers"

15 real registers: \$1 ... \$F 1 pseudo-register: \$0 [\$0] = 0

Immediate values

- In n-bit signed int
- Un n-bit unsigned int
- cc 4-bit condition code

Instructions ^o

ADD	rT ← [rA]+[rB] ^{1,2}
AND	rT ← [rA]&[rB] ^{1,3}
BRC	PC ← [rA]+U4+1 4 CC
BRU	$rL \leftarrow PC, PC \leftarrow [rA]+[rB]^{1}$
LDI	rT ← ^M[[rA]+U4+1] ¹
LDX	rT ← ^M[[rA]+[rB]] ¹
LIH	rT ₁₅₈ ← I8 ¹
NOR	rT ← [rA] [rB] ^{1,3}
SLL	rT ← [rA]< <i4 <sup="">1.3</i4>
SRS	rT ← [rA]>>I4 ^{1.3}
SRU	rT ← [rA]>>>I4 ^{1,3}
STI	M[[rA]+U4+1] ← [rS]
STX	M[[rA]+[rB]] ← [rS]
SUB	rT ← [rA]-[rB] ^{1, 2}
SYS	system call⁴

	Arithmetic / Logical					
0100	ADD	rT	rA	rB		
0101	SUB	rT	rA	rB		
0110	AND	rT	rA	rB		
0111	NOR	rT	rA	rB		

S	Shift / Load Immediate					
1000	LIH	rT I8				
1001	SLL	rT	rA	U4		
1010	SRS	rT	rA	U4		
1011	SRU	rT	rA	U4		

	Load/Store				
0111	0111 LDI rT rA U4				
0110	LDX	rT	rA	rB	
0101	STI	rS	rA	U4	
0100	STX	rS	rA	RB	

	Branch/Special				
0011	BRC C rA U4				
0010	BCU	rL	rA	rB	
0001	reserved				
0000	SYS U12				

Condition Codes				
0000	true	TT		
0001	false	FF		
0010	A = B signed	EQ		
0011	A B signed	NE		
0100	A < B signed	LT		
0101	A B signed	GE		
0110	A B signed	LE		
0111	A > B signed	GT		
1000	true			
1001	false			
1010	A = B unsigned			
1011	A B unsigned			
1100	A < B unsigned	LTU		
1101	A B unsigned	GEU		
1110	A B unsigned	LEU		
1111	A > B unsigned	GTU		

Notes

⁰ PC ← PC+1 *before* instruction execution

¹ \$0 not changed

- ² Determines flags: z, n, c, o
- ³ Determines flags: z, n,
- ⁴ No op 4 U12 = 0